Abstract

In this paper, we numerically investigate all-optical bistable switching at low input intensity based on Fano resonances available in nonlinear slab waveguide gratings with narrow slits. Fano resonances with various quality factors (Q-factors) in the single- and double-layer slab waveguide gratings are designed and their characteristics are studied by the finite-difference time-domain method. Dependencies on wavelengths of operation, various switching intensities, contrast, and bandwidth of all-optical bistabilities are observed. Comparing nonlinear characteristics of single- and double-layer grating configurations, the latter provides more bistable efficiency with the low input intensities needed and high contrast with high Q-factors at certain operating wavelengths. Both grating configurations in this work provide interesting venues for highly efficient Fano resonance-based all-optical bistable switching devices.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).
  2. M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
    [CrossRef]
  3. S. F. Mingaleev, A. E. Miroshnichenko, and Yu. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express 16, 11647–11659 (2008).
    [CrossRef]
  4. K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
    [CrossRef]
  5. L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14, 12770–12781 (2006).
    [CrossRef]
  6. Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express 17, 23459–23467 (2009).
    [CrossRef]
  7. Q. M. Ngo, K. Q. Le, and V. D. Lam, “Optical bistability based on guided-mode resonances in photonic crystal slabs,” J. Opt. Soc. Am. B 29, 1291–1295 (2012).
    [CrossRef]
  8. Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013).
    [CrossRef]
  9. J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004).
  10. A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
    [CrossRef]
  11. C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Opt. Express 14, 369–376 (2006).
    [CrossRef]
  12. M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38, 2466–2468 (2013).
    [CrossRef]
  13. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [CrossRef]
  14. L. Chen, Z. Qiang, H. Yang, H. Pang, Z. Ma, and W. Zhou, “Polarization and angular dependent transmissions on transferred nanomembrane Fano filters,” Opt. Express 17, 8396–8406 (2009).
    [CrossRef]
  15. Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013).
    [CrossRef]
  16. Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
    [CrossRef]
  17. K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves,” Opt. Express 19, 24530–24539 (2011).
    [CrossRef]
  18. S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).
  19. S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539–1562 (2011).
    [CrossRef]
  20. G. D’Aguanno, D. de Ceglia, N. Mattiucci, and M. J. Bloemer, “All-optical switching at the Fano resonances in subwavelength gratings with very narrow slits,” Opt. Lett. 36, 1984–1986 (2011).
    [CrossRef]
  21. H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
    [CrossRef]
  22. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17, 23544–23555 (2009).
    [CrossRef]
  23. A. Taflove, Computational Electrodynamics (Artech House, 1995).
  24. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
    [CrossRef]
  25. J. M. Laniel, N. Ho, and R. Vallee, “Nonlinear-refractive-index measurement in As2S3 channel waveguides by asymmetric self-phase modulation,” J. Opt. Soc. Am. B 22, 437–445 (2005).
    [CrossRef]
  26. S. Carretero-Palacios, A. Minovich, D. N. Neshev, Yu. S. Kivshar, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Optical switching in metal-slit arrays on nonlinear dielectric substrates,” Opt. Lett. 35, 4211–4213 (2010).
    [CrossRef]

2013

Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013).
[CrossRef]

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
[CrossRef]

M. Heuck, P. T. Kristensen, Y. Elesin, and J. Mørk, “Improved switching using Fano resonances in photonic crystal structures,” Opt. Lett. 38, 2466–2468 (2013).
[CrossRef]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013).
[CrossRef]

2012

2011

2010

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

S. Carretero-Palacios, A. Minovich, D. N. Neshev, Yu. S. Kivshar, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Optical switching in metal-slit arrays on nonlinear dielectric substrates,” Opt. Lett. 35, 4211–4213 (2010).
[CrossRef]

2009

2008

2006

2005

2004

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004).

2002

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Bakir, B. B.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Berggren, K. K.

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

Bermel, P.

Bloemer, M. J.

Boutami, S.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Bravo-Abad, J.

Burr, G.

Carretero-Palacios, S.

Chadha, A. S.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

Chen, L.

Chin, M. K.

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Chong, Y.

Chua, S.-L.

Cord, B. M.

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

D’Aguanno, G.

Darmawan, S.

de Ceglia, D.

Duan, H.

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

Eggleton, B. J.

Elesin, Y.

Fan, S.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013).
[CrossRef]

Farjadpour, A.

Fink, Y.

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Flach, S.

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Freeman, D.

Garcia-Vidal, F. J.

S. Carretero-Palacios, A. Minovich, D. N. Neshev, Yu. S. Kivshar, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Optical switching in metal-slit arrays on nonlinear dielectric substrates,” Opt. Lett. 35, 4211–4213 (2010).
[CrossRef]

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004).

Garrigues, M.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Gibbs, H. M.

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Grillet, C.

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Hattori, H.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Heuck, M.

Ho, N.

Hoang, T. T.

Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013).
[CrossRef]

Ibanescu, M.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Joannopoulos, J. D.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Johnson, S. G.

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. Burr, “Improving accuracy by subpixel smoothing in FDTD,” Opt. Lett. 31, 2972–2974 (2006).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Kim, S.

Kivshar, Yu. S.

Kristensen, P. T.

Kuramochi, E.

Lam, V. D.

Laniel, J. M.

Le, K. Q.

Leclercq, J.-L.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Lee, C.-W.

Lee, K.-L.

Letartre, X.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Luther-Davies, B.

Ma, Z.

Madden, S.

Magnusson, R.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Manfrinato, V. R.

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

Mario, L. Y.

Martin-Moreno, L.

S. Carretero-Palacios, A. Minovich, D. N. Neshev, Yu. S. Kivshar, F. J. Garcia-Vidal, L. Martin-Moreno, and S. G. Rodrigo, “Optical switching in metal-slit arrays on nonlinear dielectric substrates,” Opt. Lett. 35, 4211–4213 (2010).
[CrossRef]

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004).

Matsuo, S.

Mattiucci, N.

McPhedran, R.

Mingaleev, S. F.

Minovich, A.

Miroshnichenko, A. E.

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

S. F. Mingaleev, A. E. Miroshnichenko, and Yu. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express 16, 11647–11659 (2008).
[CrossRef]

Mørk, J.

Moss, D. J.

Neshev, D. N.

Ngo, Q. M.

Nguyen, V. L.

Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Notomi, M.

Nozaki, K.

Pang, H.

Pham, V. H.

Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013).
[CrossRef]

Plant, D. V.

Porto, J. A.

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004).

Qiang, Z.

Rodrigo, S. G.

Rodriguez, A.

Rojo-Romeo, P.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Roundy, D.

Sato, T.

Seassal, C.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Seo, J.-H.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013).
[CrossRef]

Shinya, A.

Shuai, Y.

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013).
[CrossRef]

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

Soljacic, M.

S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539–1562 (2011).
[CrossRef]

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Song, H. Y.

Song, S. H.

Steel, M. J.

Stone, A. D.

Taflove, A.

A. Taflove, Computational Electrodynamics (Artech House, 1995).

Tian, Z.

Vallee, R.

Viktorovitch, P.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

Vu, D. L.

Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013).
[CrossRef]

Wei, P.-K.

Winston, D.

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

Wu, S.-H.

Yang, H.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

L. Chen, Z. Qiang, H. Yang, H. Pang, Z. Ma, and W. Zhou, “Polarization and angular dependent transmissions on transferred nanomembrane Fano filters,” Opt. Express 17, 8396–8406 (2009).
[CrossRef]

Yang, J. K. W.

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

Zhao, D.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013).
[CrossRef]

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Zhou, W.

Appl. Phys. Lett.

Y. Shuai, D. Zhao, A. S. Chadha, J.-H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice-displacement,” Appl. Phys. Lett. 103, 241106 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Boutami, B. B. Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photon. Technol. Lett. 18, 835–837 (2006).

J. Opt.

Q. M. Ngo, T. T. Hoang, V. L. Nguyen, D. L. Vu, and V. H. Pham, “Metallic assisted guided-mode resonances in slab waveguide gratings for reduced optical switching intensity in bistable devices,” J. Opt. 15, 055503 (2013).
[CrossRef]

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

H. Duan, D. Winston, J. K. W. Yang, B. M. Cord, V. R. Manfrinato, and K. K. Berggren, “Sub-10-nm half-pitch electron-beam lithography by using PMMA as a negative resist,” J. Vac. Sci. Technol. B 28, C6C58–C6C62 (2010).
[CrossRef]

Nat. Mater.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Opt. Express

K.-L. Lee, S.-H. Wu, C.-W. Lee, and P.-K. Wei, “Sensitive biosensors using Fano resonance in single gold nanoslit with periodic grooves,” Opt. Express 19, 24530–24539 (2011).
[CrossRef]

K. Nozaki, A. Shinya, S. Matsuo, T. Sato, E. Kuramochi, and M. Notomi, “Ultralow-energy and high-contrast all-optical switch involving Fano resonance based on coupled photonic crystal nanocavities,” Opt. Express 21, 11877–11888 (2013).
[CrossRef]

Y. Shuai, D. Zhao, Z. Tian, J.-H. Seo, D. V. Plant, Z. Ma, S. Fan, and W. Zhou, “Double-layer Fano resonance photonic crystal filters,” Opt. Express 21, 24582–24589 (2013).
[CrossRef]

C. Grillet, D. Freeman, B. Luther-Davies, S. Madden, R. McPhedran, D. J. Moss, M. J. Steel, and B. J. Eggleton, “Characterization and modeling of Fano resonances in chalcogenide photonic crystal membranes,” Opt. Express 14, 369–376 (2006).
[CrossRef]

S.-L. Chua, Y. Chong, A. D. Stone, M. Soljacic, and J. Bravo-Abad, “Low-threshold lasing action in photonic crystal slabs enabled by Fano resonances,” Opt. Express 19, 1539–1562 (2011).
[CrossRef]

L. Y. Mario, S. Darmawan, and M. K. Chin, “Asymmetric Fano resonance and bistability for high extinction ratio, large modulation depth, and low power switching,” Opt. Express 14, 12770–12781 (2006).
[CrossRef]

S. F. Mingaleev, A. E. Miroshnichenko, and Yu. S. Kivshar, “Coupled-resonator-induced reflection in photonic-crystal waveguide structures,” Opt. Express 16, 11647–11659 (2008).
[CrossRef]

L. Chen, Z. Qiang, H. Yang, H. Pang, Z. Ma, and W. Zhou, “Polarization and angular dependent transmissions on transferred nanomembrane Fano filters,” Opt. Express 17, 8396–8406 (2009).
[CrossRef]

Q. M. Ngo, S. Kim, S. H. Song, and R. Magnusson, “Optical bistable devices based on guided-mode resonance in slab waveguide gratings,” Opt. Express 17, 23459–23467 (2009).
[CrossRef]

H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17, 23544–23555 (2009).
[CrossRef]

Opt. Lett.

Phys. Rev. B

J. A. Porto, L. Martin-Moreno, and F. J. Garcia-Vidal, “Optical bistability in subwavelength slit apertures containing nonlinear media,” Phys. Rev. B 70, 081402(R) (2004).

Phys. Rev. E

M. Soljacic, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phys. Rev. E 66, 055601(R) (2002).
[CrossRef]

Rev. Mod. Phys.

A. E. Miroshnichenko, S. Flach, and Yu. S. Kivshar, “Fano resonances in nanoscale structures,” Rev. Mod. Phys. 82, 2257–2298 (2010).
[CrossRef]

Other

H. M. Gibbs, Optical Bistability: Controlling Light with Light (Academic, 1985).

A. Taflove, Computational Electrodynamics (Artech House, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Sketch of a SLSWG with narrow slits under normally incident light. (b) Reflection spectra for various slit widths (w). The insets in (b) show the field distributions at resonances.

Fig. 2.
Fig. 2.

All-optical bistable switching in the nonlinear SLSWGs depicted in Fig. 1(a) with the operating wavelength at 50% reflection (a) w=15nm, (b) w=30nm, (c) w=45nm, (d) operating wavelengths at 1/e [(blue, horizontal, with S1) and (red, right vertical) curves] and 60% (black, left vertical curves) reflection for w=15nm.

Fig. 3.
Fig. 3.

(a) DLSWG with a 20 nm SiO2 gap. (b) Reflection spectra for various slit widths (w). (c) and (d) enlarged resonant regions for the shorter and longer wavelength regions, respectively. The insets in (c) and (d) show the field distributions at resonances.

Fig. 4.
Fig. 4.

All-optical bistable switching behaviors of the DLSWGs with (a) w=15nm and (b) w=45nm for the shorter resonant region with the operating wavelengths at 50% [blue (with S1 and red (with S2) curves] and 60% [black (left) curves] reflection.

Fig. 5.
Fig. 5.

All-optical bistable switching behaviors of the DLSWGs with (a) w=15nm, (b) w=30nm, and (c) w=45nm for the longer resonant region with the operating wavelength at 10% reflection and (d) at 20% [blue (right) and red (left) curves in (a), (b), and (c), and right and middle, respectively in (d)] and at the depth \[black far left curves in (d)] reflection for w=15nm.

Fig. 6.
Fig. 6.

(a) Switching behavior of DLSWG with the operating wavelength at 50% reflection for the slit width w=15nm and (b) All-optical switching of DLSWGs for various slit widths w.

Tables (3)

Tables Icon

Table 1. Linear Characteristics of SLSWGs and DLSWGs

Tables Icon

Table 2. Nonlinear Characteristics of SLSWGs

Tables Icon

Table 3. Nonlinear Characteristics of DLSWGs for the Operating Wavelengths at the Shorter (F1) and Longer (F2) Resonant Wavelengths

Metrics