Abstract

We report on the detailed investigation of picosecond synchronously pumped optical parametric oscillators (OPOs) with a Littrow-mounted diffraction grating as the tuning element, operating close to and far from degeneracy. In addition to the expected line-narrowing effect, we observe a fivefold increase of the resonator-length detuning tolerance when compared to conventional mirror-based OPOs. When the OPO resonator length is altered, we also measure reproducible variations of the emitted wavelength associated with lateral beam displacements that were not reported before. We show that all of these effects can be explained by a geometric adaptation of the resonant beam path within the cavity to maintain a constant cavity round-trip time.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
    [CrossRef]
  2. V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
    [CrossRef]
  3. T. R. Meyer, S. Roy, and J. R. Gord, “Improving signal-to-interference ratio in rich hydrocarbon-air flames using picosecond coherent anti-Stokes Raman scattering,” Appl. Spectrosc. 61, 1135–1140 (2007).
    [CrossRef]
  4. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385–1401 (1990).
    [CrossRef]
  5. C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
    [CrossRef]
  6. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse-compression mechanism in a synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2199–2208 (1995).
    [CrossRef]
  7. A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
    [CrossRef]
  8. K. Puech, L. Lefort, and D. C. Hanna, “Broad tuning around degeneracy in a singly resonant synchronously pumped parametric oscillator by means of a diffraction grating,” J. Opt. Soc. Am. B 16, 1533–1538 (1999).
    [CrossRef]
  9. D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
    [CrossRef]
  10. K. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95, 081111 (2009).
    [CrossRef]
  11. J.-B. Dherbecourt, A. Godard, M. Raybaut, J.-M. Melkonian, and M. Lefebvre, “Picosecond synchronously pumped ZnGeP2 optical parametric oscillator,” Opt. Lett. 35, 2197–2199 (2010).
    [CrossRef]
  12. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
    [CrossRef]

2010

2009

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
[CrossRef]

K. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95, 081111 (2009).
[CrossRef]

2008

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
[CrossRef]

2007

2001

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[CrossRef]

1999

1995

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse-compression mechanism in a synchronously pumped optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2199–2208 (1995).
[CrossRef]

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
[CrossRef]

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

1990

Andrews, J. H.

Arie, A.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Baron, A.

Beigang, R.

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

Bhupathiraju, K. V.

K. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95, 081111 (2009).
[CrossRef]

Blom, H. A.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
[CrossRef]

Chazapis, V.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
[CrossRef]

Cheung, E. C.

Combrié, S.

de Rossi, A.

Delaye, P.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
[CrossRef]

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
[CrossRef]

Dherbecourt, J.-B.

Dubreuil, N.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
[CrossRef]

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
[CrossRef]

Fallnich, C.

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

Frey, R.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
[CrossRef]

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
[CrossRef]

Galun, E.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Ganikhanov, F.

K. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95, 081111 (2009).
[CrossRef]

Gayer, O.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Godard, A.

Gord, J. R.

Hanna, D. C.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[CrossRef]

K. Puech, L. Lefort, and D. C. Hanna, “Broad tuning around degeneracy in a singly resonant synchronously pumped parametric oscillator by means of a diffraction grating,” J. Opt. Soc. Am. B 16, 1533–1538 (1999).
[CrossRef]

Herrmann, T.

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

Khaydarov, J. D. V.

Lefebvre, M.

Lefort, L.

Liu, J. M.

Melkonian, J.-M.

Meyer, T. R.

Nebel, A.

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

Norman, A. G.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
[CrossRef]

O’Connor, M. V.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[CrossRef]

Phillips, C. C.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
[CrossRef]

Puech, K.

Raybaut, M.

Roosen, G.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
[CrossRef]

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
[CrossRef]

Rowley, J. D.

K. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95, 081111 (2009).
[CrossRef]

Roy, S.

Ruffing, B.

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

Ryasnyanskiy, A.

A. Baron, A. Ryasnyanskiy, N. Dubreuil, P. Delaye, Q. V. Tran, S. Combrié, A. de Rossi, R. Frey, and G. Roosen, “Light localization induced enhancement of third order nonlinearities in a GaAs photonic crystal waveguide,” Opt. Express 17, 552–557 (2009).
[CrossRef]

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
[CrossRef]

Sacks, Z.

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Shepherd, D. P.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[CrossRef]

Singer, K. D.

Tran, Q. V.

Vodopyanov, K. L.

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
[CrossRef]

Wallenstein, R.

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

Watson, M. A.

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[CrossRef]

Appl. Phys. B

C. Fallnich, B. Ruffing, T. Herrmann, A. Nebel, R. Beigang, and R. Wallenstein, “Experimental investigation and numerical simulation of the influence of resonator-length detuning on the output power, pulse duration and spectral width of a cw mode-locked picosecond optical parametric oscillator,” Appl. Phys. B 60, 427–436 (1995).
[CrossRef]

O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008).
[CrossRef]

Appl. Phys. Lett.

K. V. Bhupathiraju, J. D. Rowley, and F. Ganikhanov, “Efficient picosecond optical parametric oscillator based on periodically poled lithium tantalate,” Appl. Phys. Lett. 95, 081111 (2009).
[CrossRef]

Appl. Spectrosc.

J. Eur. Opt. Soc. Rap. Public.

A. Ryasnyanskiy, N. Dubreuil, P. Delaye, R. Frey, and G. Roosen, “Fourier transformed picosecond synchronously pumped optical parametric oscillator without spectral filtering element,” J. Eur. Opt. Soc. Rap. Public. 3, 08037 (2008).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, “Synchronously pumped optical parametric oscillator with diffraction-grating tuning,” J. Phys. D 34, 2440–2454 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

V. Chazapis, H. A. Blom, K. L. Vodopyanov, A. G. Norman, and C. C. Phillips, “Midinfrared picosecond spectroscopy studies of Auger recombination in InSb,” Phys. Rev. B 52, 2516–2521 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic diagram of the diffraction-grating narrowed synchronously pumped OPO.

Fig. 2.
Fig. 2.

Signal output power of the 1.5 μm OPO as a function of the pump power with M1 being a broadband plane mirror or with a diffraction grating (300 and 600 lines/mm) instead of M1 (insets: signal beam profile at the maximum pump power with a plane mirror and with a 600 lines/mm diffraction grating).

Fig. 3.
Fig. 3.

Output signal spectrum emitted by the 1.5 μm OPO (with a plane mirror or with a 300 or 600 lines/mm diffraction grating) pumped at three times above threshold (pump powers of 4.8, 10.2, and 12.9 W, respectively) with the resonator length adjusted to deliver the highest signal output power.

Fig. 4.
Fig. 4.

Output signal spectrum emitted by the 2 μm OPO (with and without diffraction grating) pumped at two times above threshold (pump power of 20 W) with the resonator length adjusted to deliver the highest signal output power.

Fig. 5.
Fig. 5.

(a) Signal output power emitted by the 1.5 μm OPO as a function of the resonator-length detuning (and corresponding signal round-trip delay), with a plane mirror or with a 300 or 600 lines/mm diffraction grating, for a pumping ratio of three times above threshold at optimum cavity length (pump powers of 4.8, 10.2, and 12.9 W, respectively). (b) Width (FWHM) of the corresponding signal pulses autocorrelation traces. The FWHM of the pump autocorrelation trace is 11 ps.

Fig. 6.
Fig. 6.

1.5 μm OPO signal pulses autocorrelation traces recorded by use of a two-photon absorption autocorrelator: mirror-based cavity with a resonator-length detuning (a) δL=+20μm, (b) δL=0, and (c) δL=110μm; 600 lines/mm grating cavity (d) δL=+80μm, (e) δL=0, and (f) δL=160μm. In both cases, the pumping ratio is three times above threshold for δL=0 [pump powers of 4.8 W in (a)–(c) and 12.9 W in (d)–(f)]. The FWHM of the pump autocorrelation trace is 11 ps.

Fig. 7.
Fig. 7.

Signal output power emitted by the 2 μm OPO as a function of the resonator-length detuning (and corresponding signal round-trip delay), with and without diffraction grating, for a pumping ratio of two times above threshold at optimum cavity length (pump power of 20 W for both configurations).

Fig. 8.
Fig. 8.

Illustration of the effect of resonator-length detuning δL on the signal pulse duration for a mirror-based ps SPOPO.

Fig. 9.
Fig. 9.

1.5 μm OPO signal spectrum variation for several cavity-length detunings δL: (a) mirror-based cavity; (b) 600 lines/mm grating cavity. In both cases, the pumping ratio is three times above threshold for δL=0 [pump powers of 4.8 W in (a) and 12.9 W in (b)].

Fig. 10.
Fig. 10.

2 μm OPO signal spectrum variation for several cavity-length detunings δL: (a) mirror-based cavity; (b) 600 lines/mm grating cavity. In both cases, the pumping ratio is two times above threshold for δL=0 (pump power of 20 W in both cases).

Fig. 11.
Fig. 11.

(a)–(c) 1.5 μm OPO signal beam profile for several cavity-length detunings, δL, indicated in (d). (d) Signal wavelength and beam horizontal position as functions of cavity-length detuning for the 600 lines/mm grating cavity. (e) Signal wavelength and beam horizontal position as functions of cavity-length detuning for the 300 lines/mm grating cavity. In both configurations, the pumping ratio is three times above threshold for δL=0 [pump powers of 12.9 W in (a)–(d) and 10.2 W in (e)].

Fig. 12.
Fig. 12.

2 μm OPO signal wavelength and beam horizontal position as functions of cavity-length detuning, δL, for the 600 lines/mm grating cavity. The pumping ratio is two times above threshold for δL=0 (pump powers of 20 W).

Fig. 13.
Fig. 13.

Schematic diagram of the resonant beam geometrical adaptation for (a) confocal cavity alignment and (b) mirrors M2 and M3 closer than in configuration (a).

Fig. 14.
Fig. 14.

Effects of the insertion of a knife edge on the tolerance for cavity-length detuning of the 1.5 μm OPO with the 600 lines/mm grating.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ΔλFWHM=ln(2)λ2πwtanθ,
θ=arcsin(λ2D).
δL=δytanθ,
δθ=δyδff2,
δλ=2Dδff2δy.
δL=δy[1+(LM1M2f)δff2]tanθ,

Metrics