Abstract

Fabrication of plasmonic metamaterials having electromagnetically induced transparency (EIT)-like characteristics with sharp and strong spectral responses is a challenging task for device applications at near-infrared wavelengths. EIT-like effects in silver metamaterials consisting of dipole resonators and quadrupole resonators were experimentally demonstrated, and their characteristics were evaluated. Optical characteristics of the metamaterials could be controlled by the gap distance between the two resonators. At wavelengths around 820 nm, EIT-like effects with transmittance between 72% and 28% were observed for the metamaterials with gap distances between 13 and 69 nm. At a gap of 13 nm, a maximum modulation depth of 2.29 was achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
  2. A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).
  3. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).
  4. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).
  5. N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).
  6. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).
  7. G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).
  8. C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).
  9. F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).
  10. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).
  11. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
  12. C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).
  13. M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).
  14. H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).
  15. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
  16. S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
  17. Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).
  18. S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express 19, 15363–15370 (2011).
  19. Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
    [Crossref]
  20. J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18, 17187–17192 (2010).
  21. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).
  22. K. O’Brien, N. D. Lanzillotti-Kimura, H. Suchowski, B. Kante, Y. Park, X. Yin, X. Zhang, “Reflective interferometry for optical metamaterial phase measurements,” Opt. Lett. 37, 4089–4091 (2012).
  23. S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).
  24. R. Hokari, Y. Kanamori, K. Hane, “Comparison of electromagnetically induced transparency between silver, gold, and aluminum metamaterials at visible wavelengths,” Opt. Express 22, 3526–3537 (2014).
  25. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).
  26. S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).
  27. T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).
  28. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).
  29. C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
  30. J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18, 17997–18002 (2010).
  31. L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).
  32. P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).
  33. M. G. Moharam, T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780–1787 (1986).
  34. D. Rakić, A. B. Djurišić, J. M. Elazar, M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).

2014 (1)

2013 (2)

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

2012 (3)

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

K. O’Brien, N. D. Lanzillotti-Kimura, H. Suchowski, B. Kante, Y. Park, X. Yin, X. Zhang, “Reflective interferometry for optical metamaterial phase measurements,” Opt. Lett. 37, 4089–4091 (2012).

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

2011 (3)

S.-D. Liu, Z. Yang, R.-P. Liu, X.-Y. Li, “Plasmonic-induced optical transparency in the near-infrared and visible range with double split nanoring cavity,” Opt. Express 19, 15363–15370 (2011).

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).

2010 (9)

J. Kim, R. Soref, W. R. Buchwald, “Multi-peak electromagnetically induced transparency (EIT)-like transmission from bull’s-eye-shaped metamaterial,” Opt. Express 18, 17997–18002 (2010).

Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).

T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

J. Zhang, S. Xiao, C. Jeppesen, A. Kristensen, N. A. Mortensen, “Electromagnetically induced transparency in metamaterials at near-infrared frequency,” Opt. Express 18, 17187–17192 (2010).

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

2009 (4)

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

2008 (5)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

2007 (1)

2006 (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

2005 (2)

A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

1998 (1)

1986 (1)

Adato, R.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

Altug, H.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

Arju, N.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

Bartal, G.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

Bettiol, A. A.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

Biswas, S.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

Buchwald, W. R.

Chan, C. T.

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Cheah, K. W.

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Chen, S. M.

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Chiam, S.-Y.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

Davis, T. J.

T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).

Djurišic, A. B.

Dobynde, M. I.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).

Dolgova, T. V.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).

Dolling, G.

Dorpe, P. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

Duan, J.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

Eigenthaler, U.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

Elazar, J. M.

Etrich, C.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).

Fedyanin, A. A.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

Fu, L.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

Gaylord, T. K.

Genov, D. A.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

Giessen, H.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Gómez, D. E.

T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).

Guo, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

Hane, K.

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

Hirscher, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

Hokari, R.

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

Huang, X.-R.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

Ishikawa, A.

A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).

Jain, A.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

Jang, W. H.

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).

Jeppesen, C.

Jin, X.

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

Kafesaki, M.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

Kaiser, S.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

Kanamori, Y.

Kante, B.

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

Kawata, S.

A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).

Kim, J.

Koschny, T.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

Kristensen, A.

Kuhl, J.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Langguth, L.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

Lanzillotti-Kimura, N. D.

Lederer, F.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Lee, S.

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

Lee, Y. P.

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).

Li, G. X.

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Li, K. F.

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Li, X.-Y.

Linden, S.

Liu, H.

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

Liu, N.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Liu, R.-P.

Liu, S.-D.

Loa, I.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Lu, Y.

Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

Majewski, M. L.

Menzel, C.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

Mesch, M.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

Moharam, M. G.

Mortensen, N. A.

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

Nepal, D.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

O’Brien, K.

Pachter, R.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).

Park, K.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

Park, Y.

Paul, T.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

Pendry, J. B.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

Peng, R.-W.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

Pertsch, T.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).

Qin, L.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

Rakic, D.

Rhee, J. Y.

Y. Lu, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance,” Opt. Express 18, 20912–20917 (2010).

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

Rockstuhl, C.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Schweizer, H.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

Shcherbakov, M. R.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).

Shvets, G.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).

Singh, R.

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

Sönnichsen, C.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

Soref, R.

Soukoulis, C. M.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).

G. Dolling, M. Wegener, C. M. Soukoulis, S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15, 11536–11541 (2007).

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

Suchowski, H.

Syassen, K.

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Tanaka, T.

A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).

Tassin, P.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).

Tretyakov, S.

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

Tsai, D.-P.

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).

Ulin-Avila, E.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

Vaia, R. A.

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

Valentine, J.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

Vernon, K. C.

T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).

Wang, M.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

Wegener, M.

Weiss, T.

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

Wu, C.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).

Xiao, S.

Xiong, X.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

Yang, Z.

Yanik, A. A.

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

Yin, X.

Zentgraf, T.

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

Zhang, J.

Zhang, K.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

Zhang, L.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

Zhang, W.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

Zhang, X.

K. O’Brien, N. D. Lanzillotti-Kimura, H. Suchowski, B. Kante, Y. Park, X. Yin, X. Zhang, “Reflective interferometry for optical metamaterial phase measurements,” Opt. Lett. 37, 4089–4091 (2012).

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

Zhao, R.

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).

Zhou, J.

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

Zhu, S. N.

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Adv. Nat. Sci. Nanosci. Nanotechnol. (1)

Y. Lu, X. Jin, S. Lee, J. Y. Rhee, W. H. Jang, Y. P. Lee, “Passive and active control of a plasmonic mimic of electromagnetically induced transparency in stereometamaterials and planar metamaterials,” Adv. Nat. Sci. Nanosci. Nanotechnol. 1, 045004 (2010).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, H. Giessen, “Resonances of split-ring resonator metamaterials in the near infrared,” Appl. Phys. B 84, 219–227 (2006).

IEEE Trans. Microwave Theory Tech. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).

J. Opt. Soc. Am. A (1)

Nano Lett. (5)

N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010).

S. Biswas, J. Duan, D. Nepal, K. Park, R. Pachter, R. A. Vaia, “Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers,” Nano Lett. 13, 6287–6291 (2013).

T. J. Davis, D. E. Gómez, K. C. Vernon, “Simple model for the hybridization of surface plasmon resonances in metallic nanoparticles,” Nano Lett. 10, 2618–2625 (2010).

F. Hao, Y. Sonnefraud, P. V. Dorpe, S. A. Maier, N. J. Halas, P. Nordlander, “Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance,” Nano Lett. 8, 3983–3988 (2008).

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. V. Dorpe, P. Nordlander, S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9, 1663–1667 (2009).

Nat. Mater. (4)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).

C. Wu, A. B. Khanikaev, R. Adato, N. Arju, A. A. Yanik, H. Altug, G. Shvets, “Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers,” Nat. Mater. 11, 69–75 (2012).

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer, H. Giessen, “Three-dimensional photonic metamaterials at optical frequencies,” Nat. Mater. 7, 31–37 (2008).

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).

Nature (1)

J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008).

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (5)

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87, 125–136 (2013).

S.-Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterials,” Phys. Rev. B 80, 153103 (2009).

C. Menzel, T. Paul, C. Rockstuhl, T. Pertsch, S. Tretyakov, F. Lederer, “Validity of effective material parameters for optical fishnet metamaterials,” Phys. Rev. B 81, 035320 (2010).

M. R. Shcherbakov, M. I. Dobynde, T. V. Dolgova, D.-P. Tsai, A. A. Fedyanin, “Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance,” Phys. Rev. B 82, 193402 (2010).

H. Liu, G. X. Li, K. F. Li, S. M. Chen, S. N. Zhu, C. T. Chan, K. W. Cheah, “Linear and nonlinear Fano resonance on two-dimensional magnetic metamaterials,” Phys. Rev. B 84, 235437 (2011).

Phys. Rev. Lett. (7)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).

A. Ishikawa, T. Tanaka, S. Kawata, “Negative magnetic permeability in the visible light region,” Phys. Rev. Lett. 95, 237401 (2005).

J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005).

P. Tassin, L. Zhang, R. Zhao, A. Jain, T. Koschny, C. M. Soukoulis, “Electromagnetically induced transparency and absorption in metamaterials: the radiating two-oscillator model and its experimental confirmation,” Phys. Rev. Lett. 109, 187401 (2012).

N. Papasimakis, V. A. Fedotov, N. I. Zheludev, S. L. Prosvirnin, “Metamaterial analogue of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008).

C. Wu, A. B. Khanikaev, G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematics of (a) planar EIT metamaterial array and (b) unit of the EIT metamaterial structure with the geometrical parameters D x = 100 nm , D y = 195 nm , Q x = 170 nm , Q y = 80 nm , Q d = 80 nm , T Cr = 1 nm , and T Ag = 45 nm . Both of the periods in the x and y directions, P x and P y , are 470 nm. An incident light with the wavenumber k , electric field E , and magnetic field H impinges along the normal direction to the substrate surface.

Fig. 2.
Fig. 2.

Electric and magnetic fields in the unit structures of the EIT metamaterial array at an incident wavelength of 912 nm. (a) and (b) show real parts of the electric fields in x components located at half height of the EIT metamaterials. (c)–(f) show real parts of the magnetic fields in z components located at half height of the EIT metamaterials. The red dotted lines show outlines of the single wires and pair wires in the EIT metamaterials. The gaps are 17 nm for (a), (c), and (e) and 90 nm for (b), (d), and (f). The y -pol. and the x -pol. represent polarization directions parallel to the y axis and the x axis, respectively.

Fig. 3.
Fig. 3.

Calculated transmittance spectra of the EIT metamaterials consisting of elliptical-shaped structures and rectangular-shaped structures at g of (a) 17 nm and (b) 90 nm.

Fig. 4.
Fig. 4.

Process flow.

Fig. 5.
Fig. 5.

SEM images of (a) overall view of the resist pattern, (b) magnified view of the central region, and (c) magnified view of the lower-right corner region.

Fig. 6.
Fig. 6.

Fabricated EIT metamaterial array with g of 13 nm. An inset shows a magnified view of the unit structure.

Fig. 7.
Fig. 7.

Experimental transmittance, reflectance, and absorbance spectra depending on gap distance g . (a) SEM images of unit structures of the EIT metamaterial arrays with g of 0, 13, 17, 27, 39, 51, 61, 69, 81, and 90 nm. A white bar in the lower-right corner of each SEM image indicates a scale bar of 100 nm in length. (b), (d) Experimental transmittance and reflectance spectra at polarizations parallel to (b)  y axis and (d)  x axis. The solid and dotted lines show transmittance and reflectance spectra, respectively. (c) Absorbance spectra at y -pol. The second lowest graphs show spectra of the pair wire array, which is associated with the quadrupole resonator (dark mode). The lowest graphs show spectra of the single wire array, which is associated with the dipole resonator (bright mode).

Fig. 8.
Fig. 8.

Experimental resonant wavelengths that are wavelengths of the peak transmittance in the EIT-like effect and transmittances at the resonant wavelengths as a function of g .

Fig. 9.
Fig. 9.

Modulation depth of the fabricated EIT metamaterials with g of 13, 27, 51, and 90 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Modulation depth = T g T 90 T 90 ,

Metrics