Abstract

The dynamic propagation of the finite-energy Airy pulse (FEAP) is studied numerically in the presence of higher-order effects, including Raman scattering, self-steepening (SS), and third-order dispersion (TOD). It is shown that the Raman-induced frequency shift (RIFS) of a FEAP can be tailored by varying the truncation coefficient of the FEAP. In particular, the combined effects of Raman scattering and SS (or TOD) on the nonlinear propagation of a FEAP are identified. It is found that both TOD and SS effects tend to slow down the RIFS during the nonlinear propagation of a FEAP. In addition, the simultaneous contributions of Raman, TOD, and SS effects to the nonlinear propagation of FEAP are further discussed. Compared to the conventional symmetric pulses, such as Sech pulses, the FEAP can generate a broadening spectrum that is extended toward the blue side, in addition to the conventional red-shifted components. These results demonstrate that the FEAP can be used for supercontinuum generation and broadband sources.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. V. Berry, N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
    [CrossRef]
  2. G. A. Siviloglou, D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
    [CrossRef]
  3. G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
    [CrossRef]
  4. Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen, R. Morandotti, eds. (Springer, 2012), pp. 1–46.
  5. C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
    [CrossRef]
  6. J. Baumgartl, M. Mazilu, K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
    [CrossRef]
  7. Z. Zhang, P. Zhang, M. Mills, Z. Chen, D. N. Christodoulides, J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11, 033502 (2013).
    [CrossRef]
  8. Z. Zheng, B. Zhang, H. Chen, J. Ding, H. Wang, “Optical trapping with focused Airy beams,” Appl. Opt. 50, 43–49 (2011).
    [CrossRef]
  9. P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
    [CrossRef]
  10. P. Polynkin, M. Kolesik, J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
    [CrossRef]
  11. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
    [CrossRef]
  12. A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).
  13. C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012).
    [CrossRef]
  14. P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
    [CrossRef]
  15. P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
    [CrossRef]
  16. C. Ament, P. Polynkin, J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
    [CrossRef]
  17. M. Miyagi, S. Nishida, “Pulse spreading in a single-mode fiber due to third-order dispersion,” Appl. Opt. 18, 678–682 (1979).
    [CrossRef]
  18. D. Marcuse, “Pulse distortion in single-mode fibers,” Appl. Opt. 19, 1653–1660 (1980).
    [CrossRef]
  19. C. C. Chang, H. P. Sardesai, A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23, 283–285 (1998).
    [CrossRef]
  20. A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
    [CrossRef]
  21. D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
    [CrossRef]
  22. Y. Fattal, A. Rudnick, D. M. Marom, “Soliton shedding from airy pulses in Kerr media,” Opt. Express 19, 17298–17307 (2011).
    [CrossRef]
  23. Y. Hu, M. Li, D. Bongiovanni, M. Clerici, J. Yao, Z. Chen, J. Azaña, R. Morandotti, “Spectrum to distance mapping via nonlinear Airy pulses,” Opt. Lett. 38, 380–382 (2013).
    [CrossRef]
  24. I. M. Besieris, A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E 78, 046605 (2008).
    [CrossRef]
  25. R. Driben, Y. Hu, Z. Chen, B. A. Malomed, R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38, 2499–2501 (2013).
    [CrossRef]
  26. I. Kaminer, Y. Lumer, M. Segev, D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19, 23132–23139 (2011).
    [CrossRef]
  27. M. A. Preciado, M. A. Muriel, “Bandlimited Airy pulses for invariant propagation in single-mode fibers,” J. Lightwave Technol. 30, 3660–3666 (2012).
    [CrossRef]
  28. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  29. R. H. Stolen, W. J. Tomlinson, “Effect of the Raman part of the nonlinear refractive index on propagation of ultrashort optical pulses in fibers,” J. Opt. Soc. Am. B 9, 565–573 (1992).
    [CrossRef]
  30. J. R. de Oliveira, M. A. de Moura, J. M. Hickmann, A. S. L. Gomes, “Self-steepening of optical pulses in dispersive media,” J. Opt. Soc. Am. B 9, 2025–2027 (1992).
    [CrossRef]
  31. E. N. Tsoy, C. M. de Sterke, “Dynamics of ultrashort pulses near zero dispersion wavelength,” J. Opt. Soc. Am. B 23, 2425–2433 (2006).
    [CrossRef]
  32. S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).
    [CrossRef]
  33. Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).
    [CrossRef]
  34. B. Gross, J. T. Manassah, “Supercontinuum in the anomalous group-velocity dispersion region,” J. Opt. Soc. Am. B 9, 1813–1818 (1992).
    [CrossRef]
  35. E. Bourkoff, W. Zhao, R. I. Joseph, “Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion,” Opt. Lett. 12, 272–274 (1987).
    [CrossRef]
  36. P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
    [CrossRef]
  37. W. Zhao, E. Bourkoff, “Femtosecond pulse propagation in optical fibers: higher order effects,” IEEE J. Quantum Electron. 24, 365–372 (1988).
    [CrossRef]
  38. J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  39. F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef]
  40. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef]
  41. J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
    [CrossRef]
  42. O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 2328–2335 (2010).
    [CrossRef]
  43. A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
    [CrossRef]

2013 (4)

2012 (4)

M. A. Preciado, M. A. Muriel, “Bandlimited Airy pulses for invariant propagation in single-mode fibers,” J. Lightwave Technol. 30, 3660–3666 (2012).
[CrossRef]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012).
[CrossRef]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

2011 (5)

2010 (4)

A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[CrossRef]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
[CrossRef]

O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, G. Bouwmans, “Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers,” J. Opt. Soc. Am. B 27, 2328–2335 (2010).
[CrossRef]

2009 (2)

P. Polynkin, M. Kolesik, J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

2008 (4)

J. Baumgartl, M. Mazilu, K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

I. M. Besieris, A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E 78, 046605 (2008).
[CrossRef]

A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef]

J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

2007 (2)

G. A. Siviloglou, D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

2006 (2)

E. N. Tsoy, C. M. de Sterke, “Dynamics of ultrashort pulses near zero dispersion wavelength,” J. Opt. Soc. Am. B 23, 2425–2433 (2006).
[CrossRef]

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

2000 (1)

Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).
[CrossRef]

1999 (1)

S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).
[CrossRef]

1998 (1)

1992 (3)

1988 (1)

W. Zhao, E. Bourkoff, “Femtosecond pulse propagation in optical fibers: higher order effects,” IEEE J. Quantum Electron. 24, 365–372 (1988).
[CrossRef]

1987 (2)

E. Bourkoff, W. Zhao, R. I. Joseph, “Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion,” Opt. Lett. 12, 272–274 (1987).
[CrossRef]

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

1986 (2)

1980 (1)

1979 (2)

Abdollahpour, D.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Ament, C.

C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012).
[CrossRef]

C. Ament, P. Polynkin, J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

Azaña, J.

Balazs, N. L.

M. V. Berry, N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[CrossRef]

Bandres, C. M. A.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

Baumgartl, J.

J. Baumgartl, M. Mazilu, K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Beaud, P.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Berry, M. V.

M. V. Berry, N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[CrossRef]

Besieris, I. M.

I. M. Besieris, A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E 78, 046605 (2008).
[CrossRef]

Bétourné, A.

Bongiovanni, D.

Bourkoff, E.

W. Zhao, E. Bourkoff, “Femtosecond pulse propagation in optical fibers: higher order effects,” IEEE J. Quantum Electron. 24, 365–372 (1988).
[CrossRef]

E. Bourkoff, W. Zhao, R. I. Joseph, “Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion,” Opt. Lett. 12, 272–274 (1987).
[CrossRef]

Bouwmans, G.

Broky, J.

G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Chang, C. C.

Chen, H.

Chen, Z.

Chong, A.

A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[CrossRef]

Christodoulides, D. N.

Z. Zhang, P. Zhang, M. Mills, Z. Chen, D. N. Christodoulides, J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11, 033502 (2013).
[CrossRef]

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[CrossRef]

I. Kaminer, Y. Lumer, M. Segev, D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19, 23132–23139 (2011).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
[CrossRef]

A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

G. A. Siviloglou, D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen, R. Morandotti, eds. (Springer, 2012), pp. 1–46.

Clerici, M.

Coen, S.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Couairon, A.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

Crespo, R. D.

S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).
[CrossRef]

de Moura, M. A.

de Oliveira, J. R.

de Sterke, C. M.

Dholakia, K.

J. Baumgartl, M. Mazilu, K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Ding, J.

Dogariu, A.

G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

Driben, R.

Dudley, J. M.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Efremidis, N. K.

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[CrossRef]

Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen, R. Morandotti, eds. (Springer, 2012), pp. 1–46.

Faccio, D.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

Fattal, Y.

Fernandez-Diaz, J. M.

S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Gomes, A. S. L.

Gordon, J. P.

Greenfield, E.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

Gross, B.

Guinea, A.

S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).
[CrossRef]

Hickmann, J. M.

Hodel, W.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Howe, J. V.

J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Hu, Y.

R. Driben, Y. Hu, Z. Chen, B. A. Malomed, R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38, 2499–2501 (2013).
[CrossRef]

Y. Hu, M. Li, D. Bongiovanni, M. Clerici, J. Yao, Z. Chen, J. Azaña, R. Morandotti, “Spectrum to distance mapping via nonlinear Airy pulses,” Opt. Lett. 38, 380–382 (2013).
[CrossRef]

Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen, R. Morandotti, eds. (Springer, 2012), pp. 1–46.

Joseph, R. I.

Kaminer, I.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

I. Kaminer, Y. Lumer, M. Segev, D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19, 23132–23139 (2011).
[CrossRef]

Kolesik, M.

C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef]

Kudlinski, A.

Lee, J. H.

J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Li, L.

Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).
[CrossRef]

Li, M.

Li, Z.

Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).
[CrossRef]

Liu, J.

Liu, X.

J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Lotti, A.

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

Lumer, Y.

Malomed, B. A.

Manassah, J. T.

Marcuse, D.

Marom, D. M.

Mazilu, M.

J. Baumgartl, M. Mazilu, K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Mills, M.

Z. Zhang, P. Zhang, M. Mills, Z. Chen, D. N. Christodoulides, J. Liu, “Trapping aerosols with optical bottle arrays generated through a superposition of multiple Airy beams,” Chin. Opt. Lett. 11, 033502 (2013).
[CrossRef]

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

Mills, M. S.

Mitschke, F. M.

Miyagi, M.

Mollenauer, L. F.

Moloney, J.

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef]

Moloney, J. V.

C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012).
[CrossRef]

C. Ament, P. Polynkin, J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

Morandotti, R.

Muriel, M. A.

Nishida, S.

Palacios, S.

S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).
[CrossRef]

Panagiotopoulos, P.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

Papazoglou, D. G.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

Polynkin, P.

C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012).
[CrossRef]

C. Ament, P. Polynkin, J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
[CrossRef]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef]

Prakash, J.

Preciado, M. A.

Quiquempois, Y.

Renninger, W.

A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[CrossRef]

Rodríguez-Lara, B. M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

Rudnick, A.

Sardesai, H. P.

Segev, M.

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

I. Kaminer, Y. Lumer, M. Segev, D. N. Christodoulides, “Causality effects on accelerating light pulses,” Opt. Express 19, 23132–23139 (2011).
[CrossRef]

Shaarawi, A. M.

I. M. Besieris, A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E 78, 046605 (2008).
[CrossRef]

Siviloglou, G.

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
[CrossRef]

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

G. A. Siviloglou, D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[CrossRef]

Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen, R. Morandotti, eds. (Springer, 2012), pp. 1–46.

Stolen, R. H.

Suntsov, S.

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

Tian, H.

Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).
[CrossRef]

Tomlinson, W. J.

Tsoy, E. N.

Tzortzakis, S.

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

Vanvincq, O.

Voronin, A. A.

Wang, H.

Weber, H. P.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Weiner, A. M.

Wise, F. W.

A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[CrossRef]

Xu, C.

J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Yao, J.

Zhang, B.

Zhang, P.

Zhang, Z.

Zhao, W.

W. Zhao, E. Bourkoff, “Femtosecond pulse propagation in optical fibers: higher order effects,” IEEE J. Quantum Electron. 24, 365–372 (1988).
[CrossRef]

E. Bourkoff, W. Zhao, R. I. Joseph, “Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion,” Opt. Lett. 12, 272–274 (1987).
[CrossRef]

Zheltikov, A. M.

Zheng, Z.

Zhou, G.

Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).
[CrossRef]

Zysset, B.

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

Am. J. Phys. (1)

M. V. Berry, N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979).
[CrossRef]

Appl. Opt. (3)

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (2)

P. Beaud, W. Hodel, B. Zysset, H. P. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987).
[CrossRef]

W. Zhao, E. Bourkoff, “Femtosecond pulse propagation in optical fibers: higher order effects,” IEEE J. Quantum Electron. 24, 365–372 (1988).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. V. Howe, C. Xu, X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (5)

Nat. Photonics (2)

A. Chong, W. Renninger, D. N. Christodoulides, F. W. Wise, “Airy-Bessel wave packets as versatile linear light bullets,” Nat. Photonics 4, 103–106 (2010).
[CrossRef]

J. Baumgartl, M. Mazilu, K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2, 675–678 (2008).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

R. Driben, Y. Hu, Z. Chen, B. A. Malomed, R. Morandotti, “Inversion and tight focusing of Airy pulses under the action of third-order dispersion,” Opt. Lett. 38, 2499–2501 (2013).
[CrossRef]

Y. Hu, M. Li, D. Bongiovanni, M. Clerici, J. Yao, Z. Chen, J. Azaña, R. Morandotti, “Spectrum to distance mapping via nonlinear Airy pulses,” Opt. Lett. 38, 380–382 (2013).
[CrossRef]

C. C. Chang, H. P. Sardesai, A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23, 283–285 (1998).
[CrossRef]

E. Bourkoff, W. Zhao, R. I. Joseph, “Evolution of femtosecond pulses in single-mode fibers having higher-order nonlinearity and dispersion,” Opt. Lett. 12, 272–274 (1987).
[CrossRef]

P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Trapping and guiding microparticles with morphing autofocusing Airy beams,” Opt. Lett. 36, 2883–2885 (2011).
[CrossRef]

G. A. Siviloglou, D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32, 979–981 (2007).
[CrossRef]

A. A. Voronin, A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008).
[CrossRef]

F. M. Mitschke, L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef]

Opt. Photon. News (2)

C. M. A. Bandres, I. Kaminer, M. Mills, B. M. Rodríguez-Lara, E. Greenfield, M. Segev, D. N. Christodoulides, “Accelerating optical beams,” Opt. Photon. News 24(6), 30–37 (2013).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. N. Christodoulides, “Extreme nonlinear optics with ultra-intense self-bending Airy beams,” Opt. Photon. News 21(9), 38–43 (2010).
[CrossRef]

Phys. Rev. A (2)

C. Ament, M. Kolesik, J. V. Moloney, P. Polynkin, “Self-focusing dynamics of ultraintense accelerating Airy waveforms in water,” Phys. Rev. A 86, 043842 (2012).
[CrossRef]

P. Panagiotopoulos, D. Abdollahpour, A. Lotti, A. Couairon, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation dynamics of finite-energy Airy beams,” Phys. Rev. A 86, 013842 (2012).
[CrossRef]

Phys. Rev. E (2)

S. Palacios, A. Guinea, J. M. Fernandez-Diaz, R. D. Crespo, “Dark solitary waves in the nonlinear Schrödinger equation with third order dispersion, self-steepening, and self-frequency shift,” Phys. Rev. E 60, R45–R47 (1999).
[CrossRef]

I. M. Besieris, A. M. Shaarawi, “Accelerating airy wave packets in the presence of quadratic and cubic dispersion,” Phys. Rev. E 78, 046605 (2008).
[CrossRef]

Phys. Rev. Lett. (5)

D. Abdollahpour, S. Suntsov, D. G. Papazoglou, S. Tzortzakis, “Spatiotemporal Airy light bullets in the linear and nonlinear regimes,” Phys. Rev. Lett. 105, 253901 (2010).
[CrossRef]

Z. Li, L. Li, H. Tian, G. Zhou, “New types of solitary wave solutions for the higher order nonlinear Schrödinger equation,” Phys. Rev. Lett. 84, 4096–4099 (2000).
[CrossRef]

C. Ament, P. Polynkin, J. V. Moloney, “Supercontinuum generation with femtosecond self-healing airy pulses,” Phys. Rev. Lett. 107, 243901 (2011).
[CrossRef]

G. A. Siviloglou, J. Broky, A. Dogariu, D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99, 213901 (2007).
[CrossRef]

P. Polynkin, M. Kolesik, J. Moloney, “Filamentation of femtosecond laser Airy beams in water,” Phys. Rev. Lett. 103, 123902 (2009).
[CrossRef]

Proc. SPIE (1)

A. Couairon, A. Lotti, P. Panagiotopoulos, D. Abdollahpour, D. Faccio, D. G. Papazoglou, S. Tzortzakis, “Nonlinear propagation and filamentation of intense Airy beams in transparent media,” Proc. SPIE 8434, 84340S (2012).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324, 229–232 (2009).
[CrossRef]

Other (2)

Y. Hu, G. A. Siviloglou, P. Zhang, N. K. Efremidis, D. N. Christodoulides, Z. Chen, “Self-accelerating Airy beams: generation, control, and applications,” in Nonlinear Photonics and Novel Optical Phenomena, Z. Chen, R. Morandotti, eds. (Springer, 2012), pp. 1–46.

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a),(c) Temporal and spectral evolutions of a FEAP with truncation coefficient a = 0.1 in linear condition, and (b),(d) fundamental soliton with the same peak power N = 1 .

Fig. 2.
Fig. 2.

Temporal and spectral evolutions of a FEAP as a function of propagation distance in anomalous dispersion regime for four different launched peak powers N .

Fig. 3.
Fig. 3.

Temporal and spectral evolutions of the FEAP for different launched peak power ( N ) in the anomalous dispersion regime under the action of SPM and Raman effects ( T R = 0.1 ): (a) output pulse intensity and (e) spectral intensity at Z = 8 , and contour maps of the temporal and spectral evolution for (b),(f) N = 1.0 , (c),(g) 1.5, and (d),(h) 1.8.

Fig. 4.
Fig. 4.

Temporal and spectral evolutions of a FEAP with different truncation coefficients in the anomalous dispersion regime under the action of SPM ( N = 1.8 ) and Raman effects ( T R = 0.1 ): (a) output pulse intensity and (e) spectral intensity at Z = 6 , and contour maps of the pulse and spectral evolutions for (b),(f) a = 0.03 , (c),(g) 0.06, and (d),(h) 0.18.

Fig. 5.
Fig. 5.

Temporal and spectral evolutions of the FEAP with a = 0.1 in the anomalous dispersion regime under the action of SPM, Raman effects, and TOD with three different values: (a) output pulse and (e) spectral intensity at the normalized distance Z = 8 , and contour maps of the pulse shape and spectral evolution for (b),(f) δ 3 = 0 , (c),(g) 0.02, and (d),(h) 0.04.

Fig. 6.
Fig. 6.

Temporal and spectral evolution of the FEAP with a = 0.1 in the anomalous GVD under the action of SPM ( N = 1.8 ), Raman effects ( T R = 0.1 ), and SS with three different values: (a) output pulse and (e) spectral intensity at Z = 8 , and contour maps of the pulse and spectral evolution for (b),(f) s = 0 , (c),(g) 0.02, and (d),(h) 0.04.

Fig. 7.
Fig. 7.

Temporal and spectral evolution of the FEAP with a = 0.1 and solitons in the anomalous GVD under the action of SPM ( N = 1.8 ), Raman ( T R = 0.1 ), SS ( s = 0.05 ), and TOD ( δ 3 = 0.03 ) effects: (a) output pulse intensity and (d) spectra at Z = 6 ; (b),(c) contour maps of pulse evolution of (b) FEAP and (c) soliton; and (e),(f) contour maps of the spectra evolution of (e) FEAP and (f) solitons.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

i A z β 2 2 2 A τ 2 + γ | A | 2 A = i β 3 6 3 A τ 3 γ [ i ω 0 τ ( | A | 2 A ) τ R A | A | 2 τ ] ,
i U Z sgn ( β 2 ) 2 2 U T 2 + N 2 | U | 2 U = i δ 3 6 3 U T 3 N 2 [ i s T ( | U | 2 U ) T R U | U | 2 T ] ,
U ( T , Z = 0 ) = f ( a ) Air y ( T ) exp ( a T ) ,

Metrics