C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).

[CrossRef]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).

[CrossRef]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58–73 (2008).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

C. Antonelli, J. Chen, and F. X. Kartner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919–5924 (2007).

[CrossRef]

T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252–8262 (2007).

[CrossRef]

V. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).

[CrossRef]

F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004).

[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media (differential equation solution for plane self focusing and one dimensional self modulation of waves interacting in nonlinear media),” Sov. Phys. 34, 62–69 (1972).

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).

[CrossRef]

V. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).

[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]

F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), paper. MD8.

V. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

W. Renninger, A. Chong, and F. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58–73 (2008).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).

[CrossRef]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).

[CrossRef]

F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004).

[CrossRef]

C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).

[CrossRef]

J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).

[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]

F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), paper. MD8.

C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).

[CrossRef]

V. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

V. L. Kalashnikov, Solid State Laser (In Tech, 2012).

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).

[CrossRef]

V. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

W. Renninger, A. Chong, and F. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58–73 (2008).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media (differential equation solution for plane self focusing and one dimensional self modulation of waves interacting in nonlinear media),” Sov. Phys. 34, 62–69 (1972).

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).

[CrossRef]

W. Renninger, A. Chong, and F. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58–73 (2008).

[CrossRef]

F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

J. R. Buckley, F. W. Wise, F. O. Ilday, and T. Sosnowski, “Femtosecond fiber lasers with pulse energies above 10 nJ,” Opt. Lett. 30, 1888–1890 (2005).

[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]

F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), paper. MD8.

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media (differential equation solution for plane self focusing and one dimensional self modulation of waves interacting in nonlinear media),” Sov. Phys. 34, 62–69 (1972).

V. Kalashnikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys. B 83, 503–510 (2006).

[CrossRef]

A. Hasegawa and F. Tappert, “Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion,” Appl. Phys. Lett. 23, 142–144 (1973).

[CrossRef]

S. Namiki and H. Haus, “Noise of the stretched pulse fiber laser. I. Theory,” IEEE J. Quantum Electron. 33, 649–659 (1997).

[CrossRef]

W. Renninger, A. Chong, and F. Wise, “Pulse shaping and evolution in normal-dispersion mode-locked fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 18, 389–398 (2012).

[CrossRef]

H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991).

[CrossRef]

D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010).

[CrossRef]

V. G. Bucklew and C. R. Pollock, “Realizing self-similar pulses in solid-state laser systems,” J. Opt. Soc. Am. B 29, 3027–3033 (2012).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).

[CrossRef]

F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2, 58–73 (2008).

[CrossRef]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).

[CrossRef]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microJoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Energy scalability of mode-locked oscillators: a completely analytical approach to analysis,” Opt. Express 18, 25757–25770 (2010).

[CrossRef]

C. Antonelli, J. Chen, and F. X. Kartner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919–5924 (2007).

[CrossRef]

T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, “On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations,” Opt. Express 15, 8252–8262 (2007).

[CrossRef]

C. Aguergaray, D. Méchin, V. Kruglov, and J. D. Harvey, “Experimental realization of a mode-locked parabolic Raman fiber oscillator,” Opt. Express 18, 8680–8687 (2010).

[CrossRef]

F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004).

[CrossRef]

V. L. Kalashnikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79, 043829 (2009).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010).

[CrossRef]

C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011).

[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).

[CrossRef]

N. Akhmediev, J. M. Soto-Crespo, and G. Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: complex Ginzburg-Landau equation approach,” Phys. Rev. E 63, 056602 (2001).

[CrossRef]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000).

[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004).

[CrossRef]

V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media (differential equation solution for plane self focusing and one dimensional self modulation of waves interacting in nonlinear media),” Sov. Phys. 34, 62–69 (1972).

F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), paper. MD8.

V. L. Kalashnikov, Solid State Laser (In Tech, 2012).