Abstract

We present a proposal for generation of a robust tripartite Greenberger–Horne–Zeilinger state among three individual neutral Rydberg atoms. By modulating the relation between two-photon detuning and Rydberg interaction strength Uij(r), an effective Raman coupling is obtained between the hyperfine ground states |F=2,M=2 of three Rb87 atoms and the Rydberg states |rrr via the third-order perturbation theory. This method is also capable of implementing a three-qubit controlled-phase gate with each qubit encoded into the hyperfine ground states |F=1,M=1 and |F=2,M=2. As an extension, we generalize our scheme to the case of the multipartite GHZ state and quantum gate in virtue of high-order perturbation theory.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
    [CrossRef]
  2. D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), pp. 69–72.
  3. N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, Bell states and maximally entangled states for n qubits,” Phys. Lett. A 246, 1–6 (1998).
    [CrossRef]
  4. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [CrossRef]
  5. L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
    [CrossRef]
  6. F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005).
    [CrossRef]
  7. X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
    [CrossRef]
  8. C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state,” Opt. Commun. 253, 15–20 (2005).
    [CrossRef]
  9. Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).
  10. F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
    [CrossRef]
  11. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
    [CrossRef]
  12. S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005).
    [CrossRef]
  13. Z. Y. Xue and Z. D. Wang, “Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity,” Phys. Rev. A 75, 064303 (2007).
    [CrossRef]
  14. Z. Y. Xue, “Fast geometric gate operation of superconducting charge qubits in circuit QED,” Quantum Inf. Process. 11, 1381 (2012).
    [CrossRef]
  15. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
    [CrossRef]
  16. L. Jin and Z. Song, “Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
    [CrossRef]
  17. S. Aldana, Y. D. Wang, and C. Bruder, “Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus,” Phys. Rev. B 84, 134519 (2011).
    [CrossRef]
  18. C. P. Yang, Q. P. Su, and S. Han, “Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction,” Phys. Rev. A 86, 022329 (2012).
    [CrossRef]
  19. D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
    [CrossRef]
  20. C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005).
    [CrossRef]
  21. C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
    [CrossRef]
  22. T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
    [CrossRef]
  23. V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
    [CrossRef]
  24. A. M. Chen, S. Y. Cho, and M. D. Kim, “Implementation of a three-qubit Toffoli gate in a single step,” Phys. Rev. A 85, 032326 (2012).
    [CrossRef]
  25. Y. Q. Zhang, S. Zhang, K. H. Yeon, and S. C. Yu, “One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator,” J. Opt. Soc. Am. B 29, 300–304 (2012).
    [CrossRef]
  26. X. Q. Shao, T. Y. Zheng, and S. Zhang, “Robust Toffoli gate originating from Stark shifts,” J. Opt. Soc. Am. B 29, 1203–1207 (2012).
    [CrossRef]
  27. X. Q. Shao, T. Y. Zheng, and S. Zhang, “Fast synthesis of the Fredkin gate via quantum Zeno dynamics,” Quantum Inf. Process. 11, 1797–1808 (2012).
    [CrossRef]
  28. X. Q. Shao, T. Y. Zheng, X. L. Feng, C. H. Oh, and S. Zhang, “One-step implementation of the genuine Fredkin gate in high-Q coupled three-cavity arrays,” J. Opt. Soc. Am. B 31, 697–703 (2014).
  29. S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
    [CrossRef]
  30. L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
    [CrossRef]
  31. D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
    [CrossRef]
  32. M. Sarovar and G. J. Milburn, “Continuous quantum error correction,” Proc. SPIE 5842, 158–166 (2005).
    [CrossRef]
  33. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
    [CrossRef]
  34. D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
    [CrossRef]
  35. E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
    [CrossRef]
  36. T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
    [CrossRef]
  37. A. Chen, “Implementation of Deutsch-Jozsa algorithm and determination of value of function via Rydberg blockade,” Opt. Express 19, 2037–2045 (2011).
    [CrossRef]
  38. H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
    [CrossRef]
  39. Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
    [CrossRef]
  40. D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett. 100, 170504 (2008).
    [CrossRef]
  41. M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
    [CrossRef]
  42. M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102, 240502 (2009).
    [CrossRef]
  43. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
    [CrossRef]
  44. H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307 (2010).
    [CrossRef]
  45. X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
    [CrossRef]
  46. M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).
  47. D. D. B. Rao and K. Mølmer, “Robust Rydberg interaction gates with adiabatic passage,” arXiv:1311.5147 (2013).
  48. V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
    [CrossRef]
  49. D. A. Steck, “Rubidium 87 d line data” (Open Publication, 2001), available online at http://steck.us/alkalidata (revision 2.1.2, 12 August 2009).
  50. Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
    [CrossRef]

2014

2013

S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
[CrossRef]

2012

V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

A. M. Chen, S. Y. Cho, and M. D. Kim, “Implementation of a three-qubit Toffoli gate in a single step,” Phys. Rev. A 85, 032326 (2012).
[CrossRef]

Z. Y. Xue, “Fast geometric gate operation of superconducting charge qubits in circuit QED,” Quantum Inf. Process. 11, 1381 (2012).
[CrossRef]

C. P. Yang, Q. P. Su, and S. Han, “Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction,” Phys. Rev. A 86, 022329 (2012).
[CrossRef]

Y. Q. Zhang, S. Zhang, K. H. Yeon, and S. C. Yu, “One-step implementation of a multiqubit controlled-phase gate with superconducting quantum interference devices coupled to a resonator,” J. Opt. Soc. Am. B 29, 300–304 (2012).
[CrossRef]

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Robust Toffoli gate originating from Stark shifts,” J. Opt. Soc. Am. B 29, 1203–1207 (2012).
[CrossRef]

V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Fast synthesis of the Fredkin gate via quantum Zeno dynamics,” Quantum Inf. Process. 11, 1797–1808 (2012).
[CrossRef]

2011

A. Chen, “Implementation of Deutsch-Jozsa algorithm and determination of value of function via Rydberg blockade,” Opt. Express 19, 2037–2045 (2011).
[CrossRef]

S. Aldana, Y. D. Wang, and C. Bruder, “Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus,” Phys. Rev. B 84, 134519 (2011).
[CrossRef]

2010

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[CrossRef]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
[CrossRef]

Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
[CrossRef]

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307 (2010).
[CrossRef]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
[CrossRef]

2009

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
[CrossRef]

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102, 240502 (2009).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

L. Jin and Z. Song, “Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

2008

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett. 100, 170504 (2008).
[CrossRef]

2007

Z. Y. Xue and Z. D. Wang, “Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity,” Phys. Rev. A 75, 064303 (2007).
[CrossRef]

2006

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
[CrossRef]

Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[CrossRef]

2005

C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005).
[CrossRef]

M. Sarovar and G. J. Milburn, “Continuous quantum error correction,” Proc. SPIE 5842, 158–166 (2005).
[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
[CrossRef]

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state,” Opt. Commun. 253, 15–20 (2005).
[CrossRef]

F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005).
[CrossRef]

S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005).
[CrossRef]

2004

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

2001

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
[CrossRef]

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

2000

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

1999

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

1998

N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, Bell states and maximally entangled states for n qubits,” Phys. Lett. A 246, 1–6 (1998).
[CrossRef]

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

1995

D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
[CrossRef]

1935

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Aldana, S.

S. Aldana, Y. D. Wang, and C. Bruder, “Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus,” Phys. Rev. B 84, 134519 (2011).
[CrossRef]

Bechmann-Pasquinucci, H.

N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, Bell states and maximally entangled states for n qubits,” Phys. Lett. A 246, 1–6 (1998).
[CrossRef]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Blatt, R.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Breyta, G.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

Browaeys, A.

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).

Bruder, C.

V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

S. Aldana, Y. D. Wang, and C. Bruder, “Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus,” Phys. Rev. B 84, 134519 (2011).
[CrossRef]

Büchler, H. P.

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
[CrossRef]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
[CrossRef]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Calarco, T.

M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).

Chen, A.

Chen, A. M.

A. M. Chen, S. Y. Cho, and M. D. Kim, “Implementation of a three-qubit Toffoli gate in a single step,” Phys. Rev. A 85, 032326 (2012).
[CrossRef]

Cho, S. Y.

A. M. Chen, S. Y. Cho, and M. D. Kim, “Implementation of a three-qubit Toffoli gate in a single step,” Phys. Rev. A 85, 032326 (2012).
[CrossRef]

Chuang, I. L.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

Chwalla, M.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Cirac, J. I.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

Comparat, D.

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

Cory, D. G.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

Côté, R.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

Deng, F. G.

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
[CrossRef]

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state,” Opt. Commun. 253, 15–20 (2005).
[CrossRef]

F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005).
[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

DiVincenzo, D. P.

D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
[CrossRef]

Einstein, A.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Evellin, C.

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

Fedorov, A.

V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

Feng, X. L.

Fu, C. B.

Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).

Gaëtan, A.

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

Gill, A. T.

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
[CrossRef]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

Gisin, N.

N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, Bell states and maximally entangled states for n qubits,” Phys. Lett. A 246, 1–6 (1998).
[CrossRef]

Grangier, P.

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).

Greenberger, D. M.

D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), pp. 69–72.

Han, S.

C. P. Yang, Q. P. Su, and S. Han, “Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction,” Phys. Rev. A 86, 022329 (2012).
[CrossRef]

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[CrossRef]

C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005).
[CrossRef]

Han, Y.

Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
[CrossRef]

Hänsel, W.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Havel, T. F.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

He, B.

Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
[CrossRef]

Henage, T.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Hennrich, M.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Heshami, K.

Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
[CrossRef]

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Hong, S. K.

Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).

Horne, M.

D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), pp. 69–72.

Isenhower, L.

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
[CrossRef]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Jaksch, D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

Jin, L.

L. Jin and Z. Song, “Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

Johnson, T. A.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Kim, K.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Kim, M. D.

A. M. Chen, S. Y. Cho, and M. D. Kim, “Implementation of a three-qubit Toffoli gate in a single step,” Phys. Rev. A 85, 032326 (2012).
[CrossRef]

Knill, E.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

Laflamme, R.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

Lesanovsky, I.

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
[CrossRef]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
[CrossRef]

Li, C. Y.

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
[CrossRef]

Li, C. Z.

Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
[CrossRef]

Li, X. H.

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
[CrossRef]

F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005).
[CrossRef]

Li, Y. S.

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
[CrossRef]

Long, G. L.

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state,” Opt. Commun. 253, 15–20 (2005).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Lukin, M. D.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

Maas, W.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

Madsen, L. B.

D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett. 100, 170504 (2008).
[CrossRef]

Milburn, G. J.

M. Sarovar and G. J. Milburn, “Continuous quantum error correction,” Proc. SPIE 5842, 158–166 (2005).
[CrossRef]

Miroshnychenko, Y.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

Møller, D.

D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett. 100, 170504 (2008).
[CrossRef]

Mølmer, K.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[CrossRef]

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102, 240502 (2009).
[CrossRef]

D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett. 100, 170504 (2008).
[CrossRef]

D. D. B. Rao and K. Mølmer, “Robust Rydberg interaction gates with adiabatic passage,” arXiv:1311.5147 (2013).

Montangero, S.

M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).

Monz, T.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Müller, M.

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
[CrossRef]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
[CrossRef]

Murphy, M.

M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).

Oh, C. H.

Pan, J. W.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Pillet, P.

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

Podolsky, B.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Price, M. D.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

Rao, D. D. B.

D. D. B. Rao and K. Mølmer, “Robust Rydberg interaction gates with adiabatic passage,” arXiv:1311.5147 (2013).

Riebe, M.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Rolston, S. L.

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

Rosen, N.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Saffman, M.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[CrossRef]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
[CrossRef]

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102, 240502 (2009).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Sarovar, M.

M. Sarovar and G. J. Milburn, “Continuous quantum error correction,” Proc. SPIE 5842, 158–166 (2005).
[CrossRef]

Schindler, P.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Shao, X. Q.

Sherwood, M. H.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

Simon, C.

Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
[CrossRef]

Somaroo, S. S.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

Song, H. S.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Song, J.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Song, Z.

L. Jin and Z. Song, “Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

Steffen, M.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

Stojanovi, V. M.

V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

Stojanovic, V. M.

V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

Su, Q. P.

C. P. Yang, Q. P. Su, and S. Han, “Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction,” Phys. Rev. A 86, 022329 (2012).
[CrossRef]

Um, C. I.

Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).

Urban, E.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Vandersypen, L. M. K.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

Villar, A. S.

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

Walker, T. G.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[CrossRef]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Wallraff, A.

V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

Wang, C.

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state,” Opt. Commun. 253, 15–20 (2005).
[CrossRef]

Wang, Y.

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
[CrossRef]

Wang, Y. D.

S. Aldana, Y. D. Wang, and C. Bruder, “Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus,” Phys. Rev. B 84, 134519 (2011).
[CrossRef]

Wang, Z. D.

Z. Y. Xue and Z. D. Wang, “Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity,” Phys. Rev. A 75, 064303 (2007).
[CrossRef]

S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005).
[CrossRef]

Weimer, H.

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
[CrossRef]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
[CrossRef]

Wilk, T.

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

Wolters, J.

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

Wu, H. Z.

H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307 (2010).
[CrossRef]

Xia, Y.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).

Xiao, L.

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

Xue, Z. Y.

Z. Y. Xue, “Fast geometric gate operation of superconducting charge qubits in circuit QED,” Quantum Inf. Process. 11, 1381 (2012).
[CrossRef]

Z. Y. Xue and Z. D. Wang, “Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity,” Phys. Rev. A 75, 064303 (2007).
[CrossRef]

Yang, C. P.

C. P. Yang, Q. P. Su, and S. Han, “Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction,” Phys. Rev. A 86, 022329 (2012).
[CrossRef]

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[CrossRef]

C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005).
[CrossRef]

Yang, Z. B.

H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307 (2010).
[CrossRef]

Yannoni, C. S.

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

Yavuz, D. D.

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Yeon, K. H.

Yu, S. C.

Zanardi, P.

S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005).
[CrossRef]

Zeilinger, A.

D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), pp. 69–72.

Zhang, S.

Zhang, X. L.

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
[CrossRef]

Zhang, Y. Q.

Zhang, Z. J.

F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005).
[CrossRef]

Zheng, S. B.

S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
[CrossRef]

H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307 (2010).
[CrossRef]

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
[CrossRef]

Zheng, T. Y.

Zhou, H. Y.

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
[CrossRef]

F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005).
[CrossRef]

Zhou, P.

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
[CrossRef]

Zhu, S. L.

S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005).
[CrossRef]

Zoller, P.

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
[CrossRef]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
[CrossRef]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

Zurek, W.

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

Appl. Phys. Lett.

Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger-Horne-Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127 (2008).
[CrossRef]

J. Korean Phys. Soc.

Y. Xia, C. B. Fu, S. Zhang, S. K. Hong, K. H. Yeon, and C. I. Um, “Quantum dialogue by using the GHZ state,” J. Korean Phys. Soc. 48, 24–27 (2006).

J. Opt. Soc. Am. B

J. Phys. B

X. H. Li, P. Zhou, C. Y. Li, H. Y. Zhou, and F. G. Deng, “Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state,” J. Phys. B 39, 1975 (2006).
[CrossRef]

Nat. Phys.

H. Weimer, M. Müller, I. Lesanovsky, P. Zoller, and H. P. Büchler, “A Rydberg quantum simulator,” Nat. Phys. 6, 382–388 (2010).
[CrossRef]

E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, “Observation of Rydberg blockade between two atoms,” Nat. Phys. 5, 110–114 (2009).
[CrossRef]

Nature

L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, “Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance,” Nature 414, 883–887 (2001).
[CrossRef]

Opt. Commun.

C. Wang, F. G. Deng, and G. L. Long, “Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state,” Opt. Commun. 253, 15–20 (2005).
[CrossRef]

Opt. Express

Phys. Lett. A

N. Gisin and H. Bechmann-Pasquinucci, “Bell inequality, Bell states and maximally entangled states for n qubits,” Phys. Lett. A 246, 1–6 (1998).
[CrossRef]

Phys. Rev.

A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777–780 (1935).
[CrossRef]

Phys. Rev. A

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A 69, 052307 (2004).
[CrossRef]

F. G. Deng, X. H. Li, H. Y. Zhou, and Z. J. Zhang, “Improving the security of multiparty quantum secret sharing against Trojan horse attack,” Phys. Rev. A 72, 044302 (2005).
[CrossRef]

F. G. Deng, C. Y. Li, Y. S. Li, H. Y. Zhou, and Y. Wang, “Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement,” Phys. Rev. A 72, 022338 (2005).
[CrossRef]

L. Jin and Z. Song, “Generation of Greenberger-Horne-Zeilinger and W states for stationary qubits in a spin network via resonance scattering,” Phys. Rev. A 79, 042341 (2009).
[CrossRef]

Z. Y. Xue and Z. D. Wang, “Simple unconventional geometric scenario of one-way quantum computation with superconducting qubits inside a cavity,” Phys. Rev. A 75, 064303 (2007).
[CrossRef]

C. P. Yang, Q. P. Su, and S. Han, “Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction,” Phys. Rev. A 86, 022329 (2012).
[CrossRef]

D. P. DiVincenzo, “Two-bit gates are universal for quantum computation,” Phys. Rev. A 51, 1015–1022 (1995).
[CrossRef]

C. P. Yang and S. Han, “n-qubit-controlled phase gate with superconducting quantum-interference devices coupled to a resonator,” Phys. Rev. A 72, 032311 (2005).
[CrossRef]

C. P. Yang and S. Han, “Realization of an n-qubit controlled-U gate with superconducting quantum interference devices or atoms in cavity QED,” Phys. Rev. A 73, 032317 (2006).
[CrossRef]

Y. Han, B. He, K. Heshami, C. Z. Li, and C. Simon, “Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles,” Phys. Rev. A 81, 052311 (2010).
[CrossRef]

A. M. Chen, S. Y. Cho, and M. D. Kim, “Implementation of a three-qubit Toffoli gate in a single step,” Phys. Rev. A 85, 032326 (2012).
[CrossRef]

S. B. Zheng, “Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction,” Phys. Rev. A 87, 042318 (2013).
[CrossRef]

Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, “Coherent excitation of a single atom to a Rydberg state,” Phys. Rev. A 82, 013405 (2010).
[CrossRef]

H. Z. Wu, Z. B. Yang, and S. B. Zheng, “Implementation of a multiqubit quantum phase gate in a neutral atomic ensemble via the asymmetric Rydberg blockade,” Phys. Rev. A 82, 034307 (2010).
[CrossRef]

X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M. Saffman, “Deterministic entanglement of two neutral atoms via Rydberg blockade,” Phys. Rev. A 82, 030306(R) (2010).
[CrossRef]

Phys. Rev. B

V. M. Stojanovi, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

V. M. Stojanović, A. Fedorov, A. Wallraff, and C. Bruder, “Quantum-control approach to realizing a Toffoli gate in circuit QED,” Phys. Rev. B 85, 054504 (2012).
[CrossRef]

S. Aldana, Y. D. Wang, and C. Bruder, “Greenberger-Horne-Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus,” Phys. Rev. B 84, 134519 (2011).
[CrossRef]

Phys. Rev. Lett.

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
[CrossRef]

S. L. Zhu, Z. D. Wang, and P. Zanardi, “Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity,” Phys. Rev. Lett. 94, 100502 (2005).
[CrossRef]

D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208–2211 (2000).
[CrossRef]

D. Møller, L. B. Madsen, and K. Mølmer, “Quantum gates and multiparticle entanglement by Rydberg excitation blockade and adiabatic passage,” Phys. Rev. Lett. 100, 170504 (2008).
[CrossRef]

M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler, and P. Zoller, “Mesoscopic Rydberg gate based on electromagnetically induced transparency,” Phys. Rev. Lett. 102, 170502 (2009).
[CrossRef]

M. Saffman and K. Mølmer, “Efficient multiparticle entanglement via asymmetric Rydberg blockade,” Phys. Rev. Lett. 102, 240502 (2009).
[CrossRef]

L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).
[CrossRef]

T. Monz, K. Kim, W. Hänsel, M. Riebe, A. S. Villar, P. Schindler, M. Chwalla, M. Hennrich, and R. Blatt, “Realization of the quantum Toffoli gate with trapped ions,” Phys. Rev. Lett. 102, 040501 (2009).
[CrossRef]

D. G. Cory, M. D. Price, W. Maas, E. Knill, R. Laflamme, W. Zurek, T. F. Havel, and S. S. Somaroo, “Experimental quantum error correction,” Phys. Rev. Lett. 81, 2152–2155 (1998).
[CrossRef]

T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).
[CrossRef]

Proc. SPIE

M. Sarovar and G. J. Milburn, “Continuous quantum error correction,” Proc. SPIE 5842, 158–166 (2005).
[CrossRef]

Quantum Inf. Process.

Z. Y. Xue, “Fast geometric gate operation of superconducting charge qubits in circuit QED,” Quantum Inf. Process. 11, 1381 (2012).
[CrossRef]

X. Q. Shao, T. Y. Zheng, and S. Zhang, “Fast synthesis of the Fredkin gate via quantum Zeno dynamics,” Quantum Inf. Process. 11, 1797–1808 (2012).
[CrossRef]

Rev. Mod. Phys.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010).
[CrossRef]

Other

D. M. Greenberger, M. Horne, and A. Zeilinger, in Bell’s Theorem Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. (Kluwer, 1989), pp. 69–72.

D. A. Steck, “Rubidium 87 d line data” (Open Publication, 2001), available online at http://steck.us/alkalidata (revision 2.1.2, 12 August 2009).

M. Murphy, S. Montangero, T. Calarco, P. Grangier, and A. Browaeys, “Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms,” arXiv:1111.6083 (2011).

D. D. B. Rao and K. Mølmer, “Robust Rydberg interaction gates with adiabatic passage,” arXiv:1311.5147 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic view of atomic-level configuration. (a) The atom is driven to the Rydberg state |r from the ground state |1 via a two-photon transition, where the red laser with Rabi frequency ΩR couples to the transition |1 to the intermediate state |p (which is blue-detuned by Δ), and the blue laser with Rabi frequency ΩB drives the transition |p to |r (which is red-detuned by Δδ). (b) An effective model that suppresses the spontaneous emission of optical state |p, given that the Rydberg state lifetime is much longer than the optical state lifetime γrγp, where the effective Rabi frequency Ωeff=ΩRΩB/Δ.

Fig. 2.
Fig. 2.

Populations of |111, |rrr, and |GHZ=(1/2)(|111+i|rrr) as a function of time in unites of Ω1 for fixed U=δ. The upper panel corresponds to Δ=10Ω, while the lower panel corresponds to δ=20Ω.

Fig. 3.
Fig. 3.

Gate fidelity versus interaction time. The different curves correspond to different values of the two-photon detuning δ. Left panel, locally unitary equivalent controlled-phase gate. Right panel, standard controlled-phase gate.

Fig. 4.
Fig. 4.

Fidelity of |GHZ state (left) and controlled-phase gate (right) versus the two-photon detuning δ/Ω and decay rate γ/Ω arising from the spontaneous emission of Rydberg state |r.

Fig. 5.
Fig. 5.

Time evolution of fidelities for a four-qubit GHZ state and a controlled-phase gate, where we have set δ=20Ω and δ=12Ω, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

H^I=i=13(Δi+i2γp)|pip|(δi+i2γr)|rir|+ΩRi(|1ip|+|pi1|)+ΩBi(|pir|+|rip|)+ijUij(r)|rrijrr|,
H^I=i=13(δi+ΩBi2Δii2γr)|rir|+ΩRiΩBiΔi(|1ir|+|ri1|)+ΩRi2Δi|1i1|+ijUij(r)|rrijrr|.
H^3I=[03Ωeff003Ωeffδ2Ωeff002ΩeffU2δ3Ωeff003Ωeff3U3δ],
H^3I=3Ωeff2δ(|111111|+|rrrrrr|)+6Ωeff3δ2(|111rrr|+|rrr111|),
{111|H^3I|3131|H^3I|111δ=3Ωeff2δrrr|H^3I|3232|H^3I|rrrδ=3Ωeff2δ111|H^3I|3131|H^3I|3232|H^3I|rrrδ2=6Ωeff3δ2,
|Ψ(0)=c1|000+c2|001+c3|010+c4|011+c5|100+c6|101+c7|110+c8|111,
|Ψ(t)=c1|000+eiΩ2δtc2|001+eiΩ2δtc3|010+ei2Ω2δtc4|011+eiΩ2δtc5|100+ei2Ω2δtc6|101+ei2Ω2δtc7|110+ei3Ω2δtcos[6Ω3t/δ2]c8|111.
H^NI=[0CN1Ω0000CN1ΩδCN2Ω0000CN2ΩU2δ000000CN22U(N2)δCNN2Ω0000CNN2ΩCN12U(N1)δCNN1Ω0000CNN1ΩCN2UNδ],
H^NI=i=1N1CNiΩ|NiNi+1|+H.c.+j=1N(jN)jN1δ|NjNj|.

Metrics