Abstract

Photon-number-resolving (PNR) detection is a prerequisite for many important quantum optics applications. By using a four-channel superconducting nanowire single-photon detection system incorporating the photon multiport network technique, PNR detection of up to four photons was realized. The amplitude of the output pulse is proportional to the detected photon number. Using two channels of the system, the Poisson distribution of photon number in the faint pulsed laser was verified. The theoretical counts of the two-photon response were analyzed as a function of the mean photon number per pulse. The measurement results matched well with the theoretical calculations according to the Poisson distribution.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
    [CrossRef]
  2. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
    [CrossRef]
  3. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
    [CrossRef]
  4. P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).
  5. Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
    [CrossRef]
  6. G. Wu, Y. Jian, E. Wu, and H. P. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
    [CrossRef]
  7. O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004).
    [CrossRef]
  8. J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
    [CrossRef]
  9. A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett. 69, 3938–3940 (1996).
    [CrossRef]
  10. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
    [CrossRef]
  11. S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
    [CrossRef]
  12. D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
    [CrossRef]
  13. F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
    [CrossRef]
  14. C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
    [CrossRef]
  15. S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550  nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52, 3241–3245 (2013).
    [CrossRef]
  16. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
    [CrossRef]
  17. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
    [CrossRef]
  18. S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).
  19. S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
    [CrossRef]
  20. S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012).
    [CrossRef]
  21. T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1  W Gifford-McMahon cryocooler,” Opt. Lett. 37, 2982–2984 (2012).
    [CrossRef]
  22. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007).
    [CrossRef]
  23. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
    [CrossRef]
  24. S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35, 2133–2135 (2010).
    [CrossRef]
  25. M. Hofherr, O. Wetzstein, S. Engert, T. Ortlepp, B. Berg, K. Ilin, D. Henrich, R. Stolz, H. Toepfer, H. G. Meyer, and M. Siegel, “Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit,” Opt. Express 20, 28683–28697 (2012).
    [CrossRef]
  26. D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
    [CrossRef]
  27. For example, if we want to set the input photon to be 10  M per second, we set the light power to be − 49.92  dBm first, and then adjust the attenuator to add 40  dB attenuation to the input light.
  28. A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
    [CrossRef]
  29. R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007).
    [CrossRef]
  30. M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).
  31. Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007).
    [CrossRef]

2013 (4)

2012 (7)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012).
[CrossRef]

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1  W Gifford-McMahon cryocooler,” Opt. Lett. 37, 2982–2984 (2012).
[CrossRef]

M. Hofherr, O. Wetzstein, S. Engert, T. Ortlepp, B. Berg, K. Ilin, D. Henrich, R. Stolz, H. Toepfer, H. G. Meyer, and M. Siegel, “Orthogonal sequencing multiplexer for superconducting nanowire single-photon detectors with RSFQ electronics readout circuit,” Opt. Express 20, 28683–28697 (2012).
[CrossRef]

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

2011 (1)

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

2010 (2)

S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35, 2133–2135 (2010).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

2009 (2)

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

G. Wu, Y. Jian, E. Wu, and H. P. Zeng, “Photon-number-resolving detection based on InGaAs/InP avalanche photodiode in the sub-saturated mode,” Opt. Express 17, 18782–18787 (2009).
[CrossRef]

2008 (3)

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

2007 (4)

P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007).
[CrossRef]

Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007).
[CrossRef]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007).
[CrossRef]

2006 (1)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

2004 (1)

O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004).
[CrossRef]

2003 (1)

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[CrossRef]

2002 (2)

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

2001 (1)

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

1996 (1)

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett. 69, 3938–3940 (1996).
[CrossRef]

Amemiya, K.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Atkinson, P.

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Baek, B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Beling, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Benkhaoul, M.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Berg, B.

Berggren, K. K.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Bitauld, D.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Bowers, J. E.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Campbell, J. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Chen, H.-W.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Chen, S.

Chen, S.-J.

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

Chulkova, G.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Dauler, E. A.

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Divochiy, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Dzardanov, A.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Engert, S.

Fiore, A.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012).
[CrossRef]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Frucci, G.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

Fujii, G.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Fujino, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Fujiwara, M.

S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).

S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35, 2133–2135 (2010).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007).
[CrossRef]

Fukuda, D.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Gaggero, A.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Gerrits, T.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Gisin, N.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Gol’tsman, G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Gol’tsman, G. N.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Guo, H.

Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007).
[CrossRef]

Haderka, O.

O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004).
[CrossRef]

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[CrossRef]

Hadfield, R. H.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007).
[CrossRef]

Hamar, M.

O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004).
[CrossRef]

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[CrossRef]

Harrington, S.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

He, Y.

Henrich, D.

Hofherr, M.

Hradil, Z.

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[CrossRef]

Hu, Y.

Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007).
[CrossRef]

Huntington, E. H.

P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).

Ilin, K.

Inoue, S.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Intallura, P. M.

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Ishii, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Itatani, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Jahanmirinejad, S.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

S. Jahanmirinejad and A. Fiore, “Proposal for a superconducting photon number resolving detector with large dynamic range,” Opt. Express 20, 5017–5028 (2012).
[CrossRef]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

Jian, Y.

Jiang, M.

Jiang, M.-H.

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

Johnson, M. W.

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett. 69, 3938–3940 (1996).
[CrossRef]

Kadin, A. M.

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett. 69, 3938–3940 (1996).
[CrossRef]

Kang, Y.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Kaurova, N.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Keicher, W. E.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Kerman, A. J.

D. Rosenberg, A. J. Kerman, R. J. Molnar, and E. A. Dauler, “High-speed and high-efficiency superconducting nanowire single photon detector array,” Opt. Express 21, 1440–1447 (2013).
[CrossRef]

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Korneev, A.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

Kuo, Y.-H.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Lagoudakis, K. G.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Leoni, R.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Lévy, F.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Li, T.

Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007).
[CrossRef]

Lipatov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Lita, A. E.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[CrossRef]

Litski, S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Liu, D.

Liu, D.-K.

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

Liu, H.-D.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Makise, K.

S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1  W Gifford-McMahon cryocooler,” Opt. Lett. 37, 2982–2984 (2012).
[CrossRef]

Marsili, F.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Mattioli, F.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

McIntosh, D. C.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Meyer, H. G.

Miki, S.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef]

S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1  W Gifford-McMahon cryocooler,” Opt. Lett. 37, 2982–2984 (2012).
[CrossRef]

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35, 2133–2135 (2010).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007).
[CrossRef]

Miller, A. J.

Minaeva, O.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Mirin, R. P.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007).
[CrossRef]

Molnar, R. J.

Morse, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Nam, S. W.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express 16, 3032–3040 (2008).
[CrossRef]

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007).
[CrossRef]

Natarajan, C. M.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Numata, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Okunev, O.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Ortlepp, T.

Paniccia, M. J.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Pauchard, A.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Peng, X.

Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007).
[CrossRef]

Perina, J.

O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004).
[CrossRef]

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[CrossRef]

Ralph, T. C.

P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).

Rehácek, J.

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[CrossRef]

Ren, M.

Ribordy, G. G.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Ritchie, D. A.

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Rohde, P. P.

P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).

Rosenberg, D.

Sahin, D.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

Sarid, G.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Sasaki, M.

S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35, 2133–2135 (2010).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007).
[CrossRef]

Seleznev, V.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

Semenov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Shaw, M. D.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Shields, A. J.

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Siegel, M.

Smirnov, K.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Sobolewski, R.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Stern, J. A.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Stevens, M. J.

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007).
[CrossRef]

Stolz, R.

Tanner, M. G.

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

Terai, H.

Tittel, W.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Toepfer, H.

Tsuchida, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Vayshenker, I.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Verevkin, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

Verma, V. B.

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Voronov, B.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Wang, Y.-L.

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

Wang, Z.

S. Miki, T. Yamashita, H. Terai, and Z. Wang, “High performance fiber-coupled NbTiN superconducting nanowire single photon detectors with Gifford-McMahon cryocooler,” Opt. Express 21, 10208–10214 (2013).
[CrossRef]

S. Chen, D. Liu, W. Zhang, L. You, Y. He, W. Zhang, X. Yang, G. Wu, M. Ren, H. Zeng, Z. Wang, X. Xie, and M. Jiang, “Time-of-flight laser ranging and imaging at 1550  nm using low-jitter superconducting nanowire single-photon detection system,” Appl. Opt. 52, 3241–3245 (2013).
[CrossRef]

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1  W Gifford-McMahon cryocooler,” Opt. Lett. 37, 2982–2984 (2012).
[CrossRef]

S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

S. Miki, T. Yamashita, M. Fujiwara, M. Sasaki, and Z. Wang, “Multichannel SNSPD system with high detection efficiency at telecommunication wavelength,” Opt. Lett. 35, 2133–2135 (2010).
[CrossRef]

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007).
[CrossRef]

Ward, M. B.

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Webb, J. G.

P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).

Wetzstein, O.

Williams, C.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Wu, E.

Wu, G.

Xie, X.

Xie, X.-M.

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

Yamashita, T.

Yang, J. K. W.

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

Yang, X.

Yoshizawa, A.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

You, L.

You, L.-X.

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

Yuan, Z. L.

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Zadka, M.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Zama, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

Zaoui, W. S.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Zbinden, H.

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Zeng, H.

Zeng, H. P.

Zhang, J.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

Zhang, W.

Zheng, X.

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (1)

D.-K. Liu, S.-J. Chen, L.-X. You, Y.-L. Wang, S. Miki, Z. Wang, X.-M. Xie, and M.-H. Jiang, “Nonlatching superconducting nanowire single-photon detection with quasi-constant-voltage bias,” Appl. Phys. Express 5, 125202 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

A. J. Kerman, E. A. Dauler, W. E. Keicher, J. K. W. Yang, K. K. Berggren, G. Gol’tsman, and B. Voronov, “Kinetic-inductance-limited reset time of superconducting nanowire photon counters,” Appl. Phys. Lett. 88, 111116 (2006).
[CrossRef]

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101, 072602 (2012).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol’tsman, and A. Semenov, “Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range,” Appl. Phys. Lett. 80, 4687–4689 (2002).
[CrossRef]

A. M. Kadin and M. W. Johnson, “Nonequilibrium photon-induced hotspot: a new mechanism for photodetection in ultrathin metallic films,” Appl. Phys. Lett. 69, 3938–3940 (1996).
[CrossRef]

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79, 705–707 (2001).
[CrossRef]

Eur. Phys. J. D (1)

O. Haderka, M. Hamar, and J. Perina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D 28, 149–154 (2004).
[CrossRef]

IEEE Trans. Appl. Supercond. (2)

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium superconducting photon-number-resolving detector,” IEEE Trans. Appl. Supercond. 21, 241–245 (2011).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, “NbN superconducting single-photon detectors prepared on single-crystal MgO substrates,” IEEE Trans. Appl. Supercond. 17, 285–288 (2007).
[CrossRef]

J. Appl. Phys. (1)

R. H. Hadfield, M. J. Stevens, R. P. Mirin, and S. W. Nam, “Single-photon source characterization with twin infrared-sensitive superconducting single-photon detectors,” J. Appl. Phys. 101, 103104 (2007).
[CrossRef]

J. Phys.: Conf. Ser. (1)

M. B. Ward, P. M. Intallura, C. M. Natarajan, R. H. Hadfield, P. Atkinson, Z. L. Yuan, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, B. Baek, S. W. Nam, D. A. Ritchie, and A. J. Shields, “Biexciton cascade in telecommunication wavelength quantum dots,” J. Phys.: Conf. Ser. 210, 012036 (2010).

Nat. Photonics (3)

F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam, “Detecting single infrared photons with 93% system efficiency-supplymentary information,” Nat. Photonics 7, 210–214 (2013).
[CrossRef]

Y. Kang, H.-D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y.-H. Kuo, H.-W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. Zheng, and J. C. Campbell, “Monolithic germanium/silicon avalanche photodiodes with 340  GHz gain–bandwidth product,” Nat. Photonics 3, 59–63 (2008).
[CrossRef]

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol’tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths,” Nat. Photonics 2, 302–306 (2008).
[CrossRef]

New J. Phys. (2)

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11, 045022 (2009).
[CrossRef]

P. P. Rohde, J. G. Webb, E. H. Huntington, and T. C. Ralph, “Photon number projection using non-number-resolving detectors,” New J. Phys. 9, 233 (2007).

Opt. Express (6)

Opt. Lett. (2)

Phys. Lett. A (1)

Y. Hu, X. Peng, T. Li, and H. Guo, “On the Poisson approximation to photon distribution for faint lasers,” Phys. Lett. A 367, 173–176 (2007).
[CrossRef]

Phys. Proc. (1)

S. Miki, T. Yamashita, H. Terai, K. Makise, M. Fujiwara, M. Sasaki, and Z. Wang, “Development of fiber-coupled four-element superconducting nanowire single-photon detectors,” Phys. Proc. 36, 77–81 (2012).

Phys. Rev. A (1)

J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A 67, 061801(R) (2003).
[CrossRef]

Rev. Mod. Phys. (1)

N. Gisin, G. G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).
[CrossRef]

Supercond. Sci. Technol. (1)

C. M. Natarajan, M. G. Tanner, and R. H. Hadfield, “Superconducting nanowire single-photon detectors: physics and applications,” Supercond. Sci. Technol. 25, 063001 (2012).
[CrossRef]

Other (1)

For example, if we want to set the input photon to be 10  M per second, we set the light power to be − 49.92  dBm first, and then adjust the attenuator to add 40  dB attenuation to the input light.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the four-channel SNSPD system with PNR ability. The dashed lines represent the optical paths for single-mode fibers, while the solid lines represent the paths of electric circuits. A 1×4 fiber optical splitter was adopted to split the multiphoton pulse into four equivalent branches. A power combiner was used to sum the amplified photon-response voltage signals from the four channels.

Fig. 2.
Fig. 2.

(a) Single-shot oscilloscope trace of the SNSPD system under the illumination of the femtosecond pulsed laser diode. The average photon number per pulse before the fiber splitter was set to 100. (b) Typical voltage pulses corresponding to responses for 1–4 photons. Inset: measured (black dots) and fitted (solid pink line) pulse height distribution using the multichannel SNSPD system.

Fig. 3.
Fig. 3.

(a) SDE and Rdc of the two channels as a function of the normalized bias current. The Ics of the two detectors we chose are both 18.5 μA. The data of Rdc were collected with the fiber terminal of the SNSPD system blocked. (b) Calculated and measured Rdc1+2 as a function of the normalized bias current when μ=0.1.

Fig. 4.
Fig. 4.

Counts of two-photon response as a function of the normalized bias current when the average number of photons per pulse equals 2, 1, 0.5, and 0.1. The solid-line curves indicate the calculated result based on the SDEs of the two detectors, and the four different symbols indicate the measured results.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Rdc1+2=Td·Rdc1·Rdc2+Td·f·μ·(S1·Rdc2+S2·Rdc1),
PPoi(n)=μn·eμn!.
P2p(n)=k=0nCnk2n·k·S1·(nk)·S2.
P2p(n)=S1·S2·n·(n1)4.
N2p=f·n=2PPoi(n)·P2p(n)=f·S1·S24·eμ·n=2μn(n2)!.

Metrics