Abstract

In this paper, we predict an unexpected enhanced optical absorption (OA) phenomenon in an optical thin (60 nm) freestanding metallic grating. After introducing periodical back grooves to the grating, the absorption could be enhanced up to 95% for light incident from the topside, which is inhibited lower than 10% for light incident from the bottom side. Physically it is ascribed to the strong modulation effect of the surface plasmons (SPs)/or charge distribution on the back surface of the grating by the grooves. As a result, the reflection at the SPs resonant position is greatly inhibited. It indicates a new mechanism to achieve high OA in a freestanding subwavelength structure by directly controlling the SPs. More counterintuitively, the highly enhanced absorption will increase as the filling factor of the grating decreases, rather than decrease as the filling factor decreases. So even for a very small filling factor (0.5), unexpected high OA up to 95% could be attained at SPs resonance. The underlying physical mechanism is analyzed with a dipole moment description.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
    [CrossRef]
  2. M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
    [CrossRef]
  3. L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
    [CrossRef]
  4. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).
  5. J. B. Pendry, L. Martĺn-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef]
  6. X. R. Huang, R.-W. Peng, and R.-H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
    [CrossRef]
  7. I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).
  8. H. Raether, Surface Plasmons (Springer-Verlag, 1988).
  9. E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
    [CrossRef]
  10. Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).
  11. A. Roszkiewicz and W. Nasalski, “Reflection suppression and absorption enhancement of optical field at thin metal gratings with narrow slits,” Opt. Lett. 37, 3759–3761 (2012).
    [CrossRef]
  12. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996).
    [CrossRef]
  13. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

2012 (3)

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[CrossRef]

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).

A. Roszkiewicz and W. Nasalski, “Reflection suppression and absorption enhancement of optical field at thin metal gratings with narrow slits,” Opt. Lett. 37, 3759–3761 (2012).
[CrossRef]

2011 (1)

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

2010 (1)

X. R. Huang, R.-W. Peng, and R.-H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

2009 (1)

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).

2008 (1)

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).

2006 (1)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

2004 (1)

J. B. Pendry, L. Martĺn-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

1996 (1)

1969 (1)

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Abass, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).

Abbas, M. N.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

Alù, A.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).

Bezuglyi, E. V.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Burgelman, M.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).

Chang, Y.-C.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

Chen, H.-H.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

Chen, Z.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).

Cheng, C.-W.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

Economou, E. N.

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Fan, R.-H.

X. R. Huang, R.-W. Peng, and R.-H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martĺn-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Hooper, I. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).

Huang, X. R.

X. R. Huang, R.-W. Peng, and R.-H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

Kats, A. V.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).

Lalanne, P.

Le, K. Q.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).

Lee, S.-C.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

Levchenko, A.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).

Maes, B.

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).

Martln-Moreno, L.

J. B. Pendry, L. Martĺn-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Morris, G. M.

Nasalski, W.

Nikitin, A. Yu.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Pendry, J. B.

J. B. Pendry, L. Martĺn-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Peng, R.-W.

X. R. Huang, R.-W. Peng, and R.-H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

Roszkiewicz, A.

Sambles, J. R.

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).

Shih, M.-H.

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

Spevak, I. S.

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Wang, L. P.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[CrossRef]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

Zhang, Z. M.

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006).
[CrossRef]

M. N. Abbas, C.-W. Cheng, Y.-C. Chang, M.-H. Shih, H.-H. Chen, and S.-C. Lee, “Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2,” Appl. Phys. Lett. 98, 121116 (2011).
[CrossRef]

L. P. Wang and Z. M. Zhang, “Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics,” Appl. Phys. Lett. 100, 063902 (2012).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Lett. (1)

Phys. Rev. (1)

E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182, 539–554 (1969).
[CrossRef]

Phys. Rev. B (3)

Z. Chen, I. R. Hooper, and J. R. Sambles, “Strongly coupled surface plasmons on thin shallow metallic gratings,” Phys. Rev. B 77, 161405 (2008).

I. S. Spevak, A. Yu. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406 (2009).

A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B 85, 115449 (2012).

Phys. Rev. Lett. (1)

X. R. Huang, R.-W. Peng, and R.-H. Fan, “Making metals transparent for white light by spoof surface plasmons,” Phys. Rev. Lett. 105, 243901 (2010).
[CrossRef]

Science (1)

J. B. Pendry, L. Martĺn-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Other (2)

H. Raether, Surface Plasmons (Springer-Verlag, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Structure of the silver grating under study. The red (positive) and green (negative) points represent the charges accumulated at the corners.

Fig. 2.
Fig. 2.

Transmittance (T), reflectance (R), and absorbance (A) of (a) a simple silver grating (without back grooves) with parameters:p=0.5μm, s=0.25μm, and h=60nm. (b) A dug grating (with back grooves) with parameters: p=0.5μm, s=0.25μm, s21=0.1μm, h2=10nm, and h=60nm. Dashed lines represent the results for light incident from the bottom side.

Fig. 3.
Fig. 3.

(a1) (|E|) and (a2) (|Hy|) correspond to the absorption peak in Fig. 2(a); (b1) (|E|) and (b2) (|Hy|) correspond to the absorption peak in Fig. 2(b).

Fig. 4.
Fig. 4.

Absorbance as functions of (a) filling factor f; (b) groove width; (c) groove depth; and (d) incident angle (red line). The remaining parameters for each subgraph are given as (a) p=0.5μm, s21=0.1μm, h=60nm, and h2=10nm; (b) p=0.5μm, s=0.1μm, h=60nm, and h2=10nm; (c) p=0.5μm, s=0.25μm, s21=0.1μm, and h=60nm; (d) simple grating (lines with squares): p=0.5μm, s=0.25μm, s21=0.0μm, h=60nm, and h2=10nm; proposed structure: p=0.5μm, s=0.25μm, s21=0.1μm, h=60nm, and h2=10nm. The black lines represent the resonant positions and red dashed lines represent absorbance. The subscripts sg and pg represent simple grating and proposed grating, respectively.

Fig. 5.
Fig. 5.

T, R, and A as functions of incident angle for two-structured grating with different filling factor 0.5 (a) and 0.8 (b). The width and depth of the back groove are 0.1 and 0.01 μm, respectively.

Metrics