Abstract

In this paper, a novel flatband slow light device with low group velocity dispersion (GVD) is presented in an ellipse-hole photonic crystal (PC) line-defect waveguide. Utilizing dispersion engineering in the proposed structure, normalized delay-bandwidth product (NDBP) under a constant group index criterion is significantly improved. A step-by-step optimization process is done on the adjacent rows to the waveguide, which are filled by silica. For optimum case a high NDBP of 0.461 with a group index of 41.86 and a bandwidth of 17.06 nm is obtained by three-dimensional plane-wave expansion method. To the best of our knowledge, this NDBP is one of the highest values in PC waveguides reported to date, in which the group index value is relatively high. The numerical results show that GVD is negligible over a broad wavelength range. Also, optical pulse propagation through the waveguide is performed based on the finite-difference time-domain method. The results indicate that the shape of output pulse experiences a broadening of 2.1% compared with the incoming pulse after traveling a distance of 30a.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
    [CrossRef]
  2. I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
    [CrossRef]
  3. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
    [CrossRef]
  4. P. Ch. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
    [CrossRef]
  5. H. Su and Sh. L. Chuang, “Room-temperature slow light with semiconductor quantum-dot devices,” Opt. Lett. 31, 271–273 (2006).
    [CrossRef]
  6. T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
    [CrossRef]
  7. T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
    [CrossRef]
  8. D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
    [CrossRef]
  9. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
    [CrossRef]
  10. K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010).
    [CrossRef]
  11. D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007).
    [CrossRef]
  12. S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543–3549 (2007).
    [CrossRef]
  13. H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
    [CrossRef]
  14. M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
    [CrossRef]
  15. V. Varmazyari, H. Habibiyan, and H. Ghafoorifard, “All-optical tunable slow light achievement in photonic crystal coupled-cavity waveguides,” Appl. Opt. 52, 6497–6505 (2013).
    [CrossRef]
  16. D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
    [CrossRef]
  17. F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010).
    [CrossRef]
  18. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
    [CrossRef]
  19. R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
    [CrossRef]
  20. J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
    [CrossRef]
  21. F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
    [CrossRef]
  22. Y. Xu, L. Xiang, E. Cassan, D. Gao, and X. Zhang, “Slow light in an alternative row of ellipse-hole photonic crystal waveguide,” Appl. Opt. 52, 1155–1160 (2013).
    [CrossRef]
  23. N. Janrao, R. Zafar, and V. Janyani, “Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance,” Opt. Eng. 51, 064001 (2012).
    [CrossRef]
  24. Y. Wan, K. Fu, C. Li, and M. Yun, “Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers,” Opt. Commun. 286, 192–196 (2013).
    [CrossRef]
  25. Y. Zhai, H. Tian, and Y. Ji, “Slow light property improvement and optical buffer capability in ring-shape-hole photonic crystal waveguide,” J. Lightwave Technol. 29, 3083–3090 (2011).
    [CrossRef]
  26. M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007).
    [CrossRef]
  27. A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
    [CrossRef]
  28. S. Rawal, R. K. Sinha, and R. De La Rue, “Slow light propagation in liquid-crystal infiltrated silicon-on-insulator photonic crystal channel waveguides,” J. Lightwave Technol. 28, 2560–2571 (2010).
    [CrossRef]
  29. M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
    [CrossRef]
  30. T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007).
    [CrossRef]
  31. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
    [CrossRef]
  32. A. Yu. Petrova and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
    [CrossRef]
  33. J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
    [CrossRef]
  34. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
    [CrossRef]
  35. J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
    [CrossRef]
  36. K. Üstün and H. Kurt, “Slow light structure with enhanced delay-bandwidth product,” J. Opt. Soc. Am. B 29, 2403–2409 (2012).
    [CrossRef]
  37. M. Hosseinpour, M. Ebnali-Heidari, M. Kamali, and H. Emami, “Optofluidic photonic crystal slow light coupler,” J. Opt. Soc. Am. B 30, 717–722 (2013).
    [CrossRef]
  38. M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006).
    [CrossRef]
  39. N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
    [CrossRef]
  40. T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
    [CrossRef]
  41. M. Loňcar, T. Doll, J. Vučković, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402–1411 (2000).
    [CrossRef]
  42. J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
    [CrossRef]

2013

2012

K. Üstün and H. Kurt, “Slow light structure with enhanced delay-bandwidth product,” J. Opt. Soc. Am. B 29, 2403–2409 (2012).
[CrossRef]

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

N. Janrao, R. Zafar, and V. Janyani, “Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance,” Opt. Eng. 51, 064001 (2012).
[CrossRef]

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

2011

2010

2009

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

2008

2007

2006

2005

2004

P. Ch. Ku, F. Sedgwick, C. J. Chang-Hasnain, P. Palinginis, T. Li, H. Wang, S. W. Chang, and S. L. Chuang, “Slow light in semiconductor quantum wells,” Opt. Lett. 29, 2291–2293 (2004).
[CrossRef]

A. Yu. Petrova and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

2003

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

2001

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

2000

1999

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Adachi, J.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

Ahopelto, J.

M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007).
[CrossRef]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

Andreani, L. C.

Arpiainen, S.

M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007).
[CrossRef]

Baba, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Blair, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Borel, P. I.

Boyd, R. W.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Cassan, E.

Chang, S. W.

Chang-Hasnain, C. J.

Chen, Y.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Chuang, S. L.

Chuang, Sh. L.

Cincotti, G.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

Citrin, D. S.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Corcoran, B.

De La Rue, R.

Do Khanh, V.

Doll, T.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B. J.

Eich, M.

A. Yu. Petrova and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Emami, H.

Fage-Pedersen, J.

Feng, J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Frandsen, L. H.

Fu, K.

Y. Wan, K. Fu, C. Li, and M. Yun, “Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers,” Opt. Commun. 286, 192–196 (2013).
[CrossRef]

Gao, D.

Ghafoorifard, H.

Gomez-Iglesias, A.

Grillet, C.

Guo, X.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Habibiyan, H.

Hamachi, Y.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

Hao, R.

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Hayakawa, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

Hosoi, R.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

Hosseinpour, M.

Hou, J.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Huang, S. C.

Ishikura, N.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

Janrao, N.

N. Janrao, R. Zafar, and V. Janyani, “Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance,” Opt. Eng. 51, 064001 (2012).
[CrossRef]

Janyani, V.

N. Janrao, R. Zafar, and V. Janyani, “Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance,” Opt. Eng. 51, 064001 (2012).
[CrossRef]

Ji, Y.

Jiang, C.

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[CrossRef]

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

Kamali, M.

Karle, T.

Kato, M.

Kawasaki, T.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

Krauss, T. F.

Ku, P. Ch.

Kuramochi, E.

Kurt, H.

K. Üstün and H. Kurt, “Slow light structure with enhanced delay-bandwidth product,” J. Opt. Soc. Am. B 29, 2403–2409 (2012).
[CrossRef]

K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010).
[CrossRef]

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Lavrinenko, A. V.

Le Roux, X.

Lee, C. P.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

Li, C.

Y. Wan, K. Fu, C. Li, and M. Yun, “Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers,” Opt. Commun. 286, 192–196 (2013).
[CrossRef]

Li, J.

Li, T.

Li, Y.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Lipsanen, H.

M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007).
[CrossRef]

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

Liu, W.

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

Liu, Y.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Loncar, M.

Long, F.

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

F. Long, H. Tian, and Y. Ji, “Buffering capability and limitations in low dispersion photonic crystal waveguides with elliptical airholes,” Appl. Opt. 49, 4808–4813 (2010).
[CrossRef]

Ma, J.

F. Wang, J. Ma, and C. Jiang, “Dispersionless slow wave in novel 2-D photonic crystal line defect waveguides,” J. Lightwave Technol. 26, 1381–1386 (2008).
[CrossRef]

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[CrossRef]

Marris-Morini, D.

Michaeli, A.

Monat, C.

Moreolo, M. S.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

Mori, D.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

Morra, V.

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

Mulot, M.

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007).
[CrossRef]

Notomi, M.

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543–3549 (2007).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Novikova, I.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

O’Brien, D.

O’Faolain, L.

Palinginis, P.

Peng, C.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Petrova, A. Yu.

A. Yu. Petrova and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

Rawal, S.

Salib, M.

Sasaki, H.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

Saynatjoki, A.

M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007).
[CrossRef]

Säynätjoki, A.

Scherer, A.

Sedgwick, F.

Settle, M. D.

Shinkawa, M.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

Shinya, A.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Sinha, R. K.

Su, H.

Summers, C. J.

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Takahashi, C.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Takahashi, J.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Tamanuki, T.

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

Tekeste, M. Y.

Tian, H.

Üstün, K.

Varmazyari, V.

Vivien, L.

Vuckovic, J.

Walsworth, R. L.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

Wan, Y.

Y. Wan, K. Fu, C. Li, and M. Yun, “Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers,” Opt. Commun. 286, 192–196 (2013).
[CrossRef]

Wang, D.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Wang, F.

Wang, H.

Wang, Z.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

White, T. P.

Wu, H.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

Wu, J.

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Xiang, L.

Xiao, Y.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

Xu, Y.

Yamada, K.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yarrison-Rice, J. M.

Yokohama, I.

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Yu, Z.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Yun, M.

Y. Wan, K. Fu, C. Li, and M. Yun, “Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers,” Opt. Commun. 286, 192–196 (2013).
[CrossRef]

Zafar, R.

N. Janrao, R. Zafar, and V. Janyani, “Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance,” Opt. Eng. 51, 064001 (2012).
[CrossRef]

Zhai, Y.

Zhang, X.

Zhou, S.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

Zhou, Z.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

A. Yu. Petrova and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004).
[CrossRef]

N. Ishikura, R. Hosoi, R. Hayakawa, T. Tamanuki, M. Shinkawa, and T. Baba, “Photonic crystal tunable slow light device integrated with multi-heaters,” Appl. Phys. Lett. 100, 221110 (2012).
[CrossRef]

IEEE J. Quantum Electron.

J. Ma and C. Jiang, “Flatband slow light in asymmetric line-defect photonic crystal waveguide featuring low group velocity and dispersion,” IEEE J. Quantum Electron. 44, 763–769 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Hou, D. Gao, H. Wu, R. Hao, and Z. Zhou, “Flat band slow light in symmetric line defect photonic crystal waveguides,” IEEE Photon. Technol. Lett. 21, 1571–1573 (2009).
[CrossRef]

J. Lightwave Technol.

J. Opt.

D. Wang, Z. Yu, Y. Liu, X. Guo, and S. Zhou, “Optimization of a two-dimensional photonic crystal waveguide for ultraslow light propagation,” J. Opt. 14, 125101 (2012).
[CrossRef]

J. Opt. A

M. S. Moreolo, V. Morra, and G. Cincotti, “Design of photonic crystal delay lines based on enhanced coupled-cavity waveguides,” J. Opt. A 10, 064002 (2008).
[CrossRef]

M. Mulot, A. Saynatjoki, S. Arpiainen, H. Lipsanen, and J. Ahopelto, “Slow light propagation in photonic crystal waveguides with ring-shaped holes,” J. Opt. A 9, S415–S418 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D

T. Baba and D. Mori, “Slow light engineering in photonic crystals,” J. Phys. D 40, 2659–2665 (2007).
[CrossRef]

J. Vac. Sci. Technol. B

J. Feng, Y. Chen, J. Blair, H. Kurt, R. Hao, D. S. Citrin, C. J. Summers, and Z. Zhou, “Fabrication of annular photonic crystals by atomic layer deposition and sacrificial etching,” J. Vac. Sci. Technol. B 27, 568–572 (2009).
[CrossRef]

Laser Photon. Rev.

I. Novikova, R. L. Walsworth, and Y. Xiao, “Electromagnetically induced transparency-based slow and stored light in warm atoms,” Laser Photon. Rev. 6, 333–353 (2012).
[CrossRef]

Nature

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999).
[CrossRef]

Opt. Commun.

H. Tian, F. Long, W. Liu, and Y. Ji, “Tunable slow light and buffer capability in photonic crystal coupled-cavity waveguides based on electro-optic effect,” Opt. Commun. 285, 2760–2764 (2012).
[CrossRef]

Y. Wan, K. Fu, C. Li, and M. Yun, “Improving slow light effect in photonic crystal line defect waveguide by using eye-shaped scatterers,” Opt. Commun. 286, 192–196 (2013).
[CrossRef]

J. Wu, Y. Li, C. Peng, and Z. Wang, “Wideband and low dispersion slow light in slotted photonic crystal waveguide,” Opt. Commun. 283, 2815–2819 (2010).
[CrossRef]

Opt. Eng.

N. Janrao, R. Zafar, and V. Janyani, “Improved design of photonic crystal waveguides with elliptical holes for enhanced slow light performance,” Opt. Eng. 51, 064001 (2012).
[CrossRef]

Opt. Express

A. Säynätjoki, M. Mulot, J. Ahopelto, and H. Lipsanen, “Dispersion engineering of photonic crystal waveguides with ring-shaped holes,” Opt. Express 15, 8323–8328 (2007).
[CrossRef]

M. Ebnali-Heidari, C. Grillet, C. Monat, and B. J. Eggleton, “Dispersion engineering of slow light photonic crystal waveguides using microfluidic infiltration,” Opt. Express 17, 1628–1635 (2009).
[CrossRef]

M. Y. Tekeste and J. M. Yarrison-Rice, “High efficiency photonic crystal based wavelength demultiplexer,” Opt. Express 14, 7931–7942 (2006).
[CrossRef]

L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444–9450 (2006).
[CrossRef]

T. Baba, T. Kawasaki, H. Sasaki, J. Adachi, and D. Mori, “Large delay-bandwidth product and tuning of slow light pulse in photonic crystal coupled waveguide,” Opt. Express 16, 9245–9253 (2008).
[CrossRef]

J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16, 6227–6232 (2008).
[CrossRef]

R. Hao, E. Cassan, X. Le Roux, D. Gao, V. Do Khanh, L. Vivien, D. Marris-Morini, and X. Zhang, “Improvement of delay-bandwidth product in photonic crystal slow-light waveguides,” Opt. Express 18, 16309–16319 (2010).
[CrossRef]

D. Mori and T. Baba, “Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide,” Opt. Express 13, 9398–9408 (2005).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009).
[CrossRef]

K. Üstün and H. Kurt, “Ultra slow light achievement in photonic crystals by merging coupled cavities with waveguides,” Opt. Express 18, 21155–21161 (2010).
[CrossRef]

D. O’Brien, M. D. Settle, T. Karle, A. Michaeli, M. Salib, and T. F. Krauss, “Coupled photonic crystal heterostructure nanocavities,” Opt. Express 15, 1228–1233 (2007).
[CrossRef]

S. C. Huang, M. Kato, E. Kuramochi, C. P. Lee, and M. Notomi, “Time-domain and spectral-domain investigation of inflection-point slow-light modes in photonic crystal coupled waveguides,” Opt. Express 15, 3543–3549 (2007).
[CrossRef]

T. P. White, L. O’Faolain, J. Li, L. C. Andreani, and T. F. Krauss, “Silica-embedded silicon photonic crystal waveguides,” Opt. Express 16, 17076–17081 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. Lett.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Observation of ultraslow light propagation in a ruby crystal at room temperature,” Phys. Rev. Lett. 90, 113903 (2003).
[CrossRef]

M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, “Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs,” Phys. Rev. Lett. 87, 253902 (2001).
[CrossRef]

Proc. Jpn. Acad.

T. Baba, J. Adachi, N. Ishikura, Y. Hamachi, H. Sasaki, T. Kawasaki, and D. Mori, “Dispersion-controlled slow light in photonic crystal waveguides,” Proc. Jpn. Acad. 85, 443–453 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic representation of the basic proposed structure. The dashed lines show the supercell used in numerical calculation. The white ellipse shapes correspond to air holes while the blue ones filled by SiO2; also Dx and Dy are waveguide displacement in horizontal and vertical direction.

Fig. 2.
Fig. 2.

(a) Dispersion curve of line defect PC waveguide for parameters of ra=Ra=0.4a and rb=Rb=0.33a. The solid curve is considered as the guided mode. (b) 3D view of normalized H-field distribution of the relevant mode in Si slab at kx=0.5(2π/a).

Fig. 3.
Fig. 3.

(a) Dispersion relation of guided modes for different PCWs. Comparison of slow light frequency window between (b) conventional circle-hole PCW and ellipse-hole PCW, (c) ellipse-hole PCW and ARE-PCW, and (d) ARE-PCW and basic proposed PCW.

Fig. 4.
Fig. 4.

(a) Dispersion relation and (b) group index of the guided mode for different values of ra.

Fig. 5.
Fig. 5.

Dispersion relation of the guided mode for different values of rb (with previously tuned value ra=0.4a).

Fig. 6.
Fig. 6.

(a) Dispersion relation and (b) group index of the guided mode for different values of Dx (with previously tuned values ra=0.4a and rb=0.48a).

Fig. 7.
Fig. 7.

(a) Dispersion relation and (b) group index of the guided mode for different values of Dy (with previously tuned values ra=0.4a, rb=0.48a, and Dx=0.).

Fig. 8.
Fig. 8.

GVD parameter β2 of the optimized PCW as a function of normalized frequency. The inset of figure shows schematic of the optimized structure.

Fig. 9.
Fig. 9.

(a) Schematic of the structure used in FDTD simulation. The relevant parameters are adapted by previously optimized values. Whole length of the structure is 40a and the distance between input and output monitors is 30a. (b) Temporal pulse propagation at input and output detectors placed at the points 5a and 35a, respectively.

Fig. 10.
Fig. 10.

Proposed structure with randomly distributed ellipse-shape imperfections. Both minor and major radii of regions labeled by A are decreased by 3 nm. The minor radii of regions labeled by B are decreased by 3 nm and major radii are increased by 3 nm. The minor radii of regions labeled by C are increased by 3 nm and major radii are decreased by 3 nm. Both minor and major radii of regions labeled by D are increased by 3 nm.

Fig. 11.
Fig. 11.

Schematic fabrication process of the proposed structure: (a) multilayer structure used in the fabrication of Si membrane waveguide, (b) transferring pattern of silica regions into Si slab, (c) deposition of SiO2 into the etched regions, (d) transferring pattern of air holes into Si slab, and (e) removing the BOX layer underneath the waveguide.

Tables (6)

Tables Icon

Table 1. Slow Light Properties for Various ra

Tables Icon

Table 2. Slow Light Properties for Various rb (with Previously Tuned Value ra=0.4a)

Tables Icon

Table 3. Slow Light Properties for Various Dx (with Previously Tuned Values ra=0.4a and rb=0.48a)

Tables Icon

Table 4. Slow Light Properties for Various Dy (with Previously Tuned Values ra=0.4a, rb=0.48a, and Dx=0)

Tables Icon

Table 5. Comparison between the Optimized PCW and Reference Papers

Tables Icon

Table 6. Effects of Fabrication Errors on Slow Light Parameters of Suggested Structure

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

vg=dωdk=cng,
ng=n+ωdndω,
β2=d2kdω2=(1vg)3d2ωdk2=1cdngdω.
NDBP=ng×Δωω0,

Metrics