Abstract

The image resolution of an aberration-corrected laser-scanning fluorescence microscopy (LSFM) system, like all other classical optical imaging modalities, is ultimately governed by diffraction limit and can be, in practice, influenced by the noise. However, consideration of only these two parameters is not adequate for LSFM with ultrafast laser-scanning, in which the dwell time of each resolvable image point becomes comparable with the fluorescence lifetime. In view of the continuing demand for faster LSFM, we here revisit the theoretical framework of LSFM and investigate the impact of the scanning speed on the resolution. In particular, we identify there are different speed regimes and excitation conditions in which the resolution is primarily limited by diffraction limit, fluorescence lifetime, or intrinsic noise. Our model also suggests that the speed of the current laser-scanning technologies is still at least an order of magnitude below the limit (sub-MHz to MHz), at which the diffraction-limited resolution can be preserved. We thus anticipate that the present study can provide new insight for practical designs and implementation of ultrafast LSFM, based on emerging laser-scanning techniques, e.g., ultrafast wavelength-swept sources, or optical time-stretch.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 20–42.
  2. H. R. Petty, “High speed microscopy in biomedical research,” Opt. Photon. News 15(1), 40–45 (2004).
    [CrossRef]
  3. K. H. Kim, C. Buehler, and P. T. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
    [CrossRef]
  4. T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
    [CrossRef]
  5. J. M. Larson, S. A. Schwartz, and M. W. Davidson, “Resonant scanning in laser confocal microscopy,” , (Nikon Microscopy, 2000).
  6. S. Choi, P. Kim, R. Boutilier, M. Kim, Y. Lee, and H. Lee, “Development of a high speed laser scanning confocal microscope with an acquisition rate up to 200 frames per second,” Opt. Express 21, 23611–23618 (2013).
    [CrossRef]
  7. J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).
  8. V. Bansal, S. Patel, and P. Saggau, A High-Speed Confocal Laser-Scanning Microscope Based on Acousto-Optic Deflectors and a Digital Micromirror Device (Institute of Electrical and Electronics Engineers, 2003), pp. 2124–2127.
  9. M. Strupler, E. D. Montigny, D. Morneau, and C. Boudoux, “Rapid spectrally encoded fluorescence imaging using a wavelength-swept source,” Opt. Lett. 35, 1737–1739 (2010).
    [CrossRef]
  10. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [CrossRef]
  11. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
    [CrossRef]
  12. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
    [CrossRef]
  13. Y. Qiu, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20, 24115–24123 (2012).
    [CrossRef]
  14. T. T. Wong, A. K. Lau, K. K. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1  μm,” Opt. Lett. 37, 3330–3332 (2012).
    [CrossRef]
  15. C. Zhang, Y. Qiu, R. Zhu, K. K. Wong, and K. K. Tsia, “Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source,” Opt. Express 19, 15810–15816 (2011).
    [CrossRef]
  16. A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
    [CrossRef]
  17. P. I. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).
    [CrossRef]
  18. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
    [CrossRef]
  19. K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
    [CrossRef]
  20. E. Stelzer, “Contrast, resolution, pixelation, dynamic range, and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
    [CrossRef]
  21. O. Nakamura and S. Kawata, “Three-dimensional transfer-function analysis of the tomographic capability of a confocal fluorescence microscope,” J. Opt. Soc. Am. 7, 522–526 (1990).
    [CrossRef]
  22. H. R. Petty, “Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70, 687–709 (2007).
    [CrossRef]
  23. J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. 20, 368–379 (2003).
    [CrossRef]
  24. Q. Zhao, I. T. Young, and J. G. S. de Jong, “Photon budget analysis for fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 16, 086007 (2011).
    [CrossRef]
  25. D. Semwogerere and E. R. Weeks, Confocal Microscopy (Encyclopedia of Biomaterials and Biomedical Engineering, 2005).
  26. E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. 218, 148–159 (2005).
    [CrossRef]
  27. B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, “Gaussian approximations of fluorescence microscope point-spread function models,” Appl. Opt. 46, 1819–1829 (2007).
    [CrossRef]
  28. K. Visscher, G. J. Braeckmans, and T. D. Visser, “Fluorescence saturation in confocal microscopy,” J. Microsc. 175, 162–165 (1994).
    [CrossRef]
  29. J. W. Daily, “Saturation effects in laser induced fluorescence spectroscopy,” Appl. Opt. 16, 568–571 (1977).
    [CrossRef]
  30. K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
    [CrossRef]
  31. S. C. Schlachter, D. Kang, M. J. Gora, P. Vacas-Jacques, T. Wu, R. W. Carruth, E. J. Wilsterman, B. E. Bouma, K. Woods, and G. J. Tearney, “Spectrally encoded confocal microscopy of esophageal tissues at 100  kHz line rate,” Biomed. Opt. Express 4, 1636–1645 (2013).
    [CrossRef]
  32. R. Huber, D. C. Adler, V. J. Srinivasan, and J. G. Fujimoto, “Fourier domain mode locking at 1050  nm for ultra-high-speed optical coherence tomography of the human retina at 236,000 axial scans per second,” Opt. Lett. 32, 2049–2051 (2007).
    [CrossRef]
  33. H.-C. Lee, J. J. Liu, Y. Sheikine, A. D. Aguirre, J. L. Connolly, and J. G. Fujimoto, “Ultrahigh speed spectral-domain optical coherence microscopy,” Biomed. Opt. Express 4, 1236–1254 (2013).
    [CrossRef]
  34. W. Wieser, B. R. Biedermann, T. Klein, C. M. Eigenwillig, and R. Huber, “Multi-megahertz oct: high quality 3D imaging at 20 million a-scans and 4.5 GVoxels per second,” Opt. Express 18, 14685–14704 (2010).
    [CrossRef]
  35. Y. Yuan, T. Papaioannou, and Q. Fang, “Single-shot acquisition of time-resolved fluorescence spectra using a multiple delay optical fiber bundle,” Opt. Lett. 33, 791–793 (2008).
    [CrossRef]
  36. R. W. K. Leung, S.-C. A. Yeh, and Q. Fang, “Effects of incomplete decay in fluorescence lifetime estimation,” Biomed. Opt. Express 2, 2517–2531 (2011).
    [CrossRef]
  37. R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
    [CrossRef]
  38. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier-domain-mode locked laser,” Opt. Express 15, 6251–6267 (2007).
    [CrossRef]
  39. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
    [CrossRef]
  40. G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
    [CrossRef]
  41. R. M. Doornbos, B. G. de Grooth, and J. Greve, “Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry,” Cytometry 29, 204–214 (1997).
    [CrossRef]

2013

2012

T. T. Wong, A. K. Lau, K. K. Wong, and K. K. Tsia, “Optical time-stretch confocal microscopy at 1  μm,” Opt. Lett. 37, 3330–3332 (2012).
[CrossRef]

Y. Qiu, J. Xu, K. K. Y. Wong, and K. K. Tsia, “Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window,” Opt. Express 20, 24115–24123 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

2011

2010

2009

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
[CrossRef]

2008

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[CrossRef]

Y. Yuan, T. Papaioannou, and Q. Fang, “Single-shot acquisition of time-resolved fluorescence spectra using a multiple delay optical fiber bundle,” Opt. Lett. 33, 791–793 (2008).
[CrossRef]

2007

2006

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

2005

E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. 218, 148–159 (2005).
[CrossRef]

2004

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef]

H. R. Petty, “High speed microscopy in biomedical research,” Opt. Photon. News 15(1), 40–45 (2004).
[CrossRef]

2003

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. 20, 368–379 (2003).
[CrossRef]

1999

P. I. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).
[CrossRef]

K. H. Kim, C. Buehler, and P. T. So, “High-speed, two-photon scanning microscope,” Appl. Opt. 38, 6004–6009 (1999).
[CrossRef]

1998

E. Stelzer, “Contrast, resolution, pixelation, dynamic range, and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
[CrossRef]

1997

R. M. Doornbos, B. G. de Grooth, and J. Greve, “Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry,” Cytometry 29, 204–214 (1997).
[CrossRef]

1994

K. Visscher, G. J. Braeckmans, and T. D. Visser, “Fluorescence saturation in confocal microscopy,” J. Microsc. 175, 162–165 (1994).
[CrossRef]

1990

O. Nakamura and S. Kawata, “Three-dimensional transfer-function analysis of the tomographic capability of a confocal fluorescence microscope,” J. Opt. Soc. Am. 7, 522–526 (1990).
[CrossRef]

1977

Adam, J.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Adler, D. C.

Aguirre, A. D.

Ayazi, A.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Babbey, C. M.

E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. 218, 148–159 (2005).
[CrossRef]

Bansal, V.

V. Bansal, S. Patel, and P. Saggau, A High-Speed Confocal Laser-Scanning Microscope Based on Acousto-Optic Deflectors and a Digital Micromirror Device (Institute of Electrical and Electronics Engineers, 2003), pp. 2124–2127.

Bastiaens, P. I.

P. I. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).
[CrossRef]

Belding, J.

Berland, K. M.

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef]

Biedermann, B. R.

Boudoux, C.

Bouma, B. E.

Bourdieu, L.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Boutilier, R.

Brackbill, N.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Braeckmans, G. J.

K. Visscher, G. J. Braeckmans, and T. D. Visser, “Fluorescence saturation in confocal microscopy,” J. Microsc. 175, 162–165 (1994).
[CrossRef]

Brown, R.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Buehler, C.

Capewell, D.

Carlsson, K.

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. 20, 368–379 (2003).
[CrossRef]

Carruth, R. W.

Chatenay, D.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Chen, C.

Chen, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Choi, S.

Cianci, G. C.

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef]

Connolly, J. L.

Daily, J. W.

Davidson, M. W.

J. M. Larson, S. A. Schwartz, and M. W. Davidson, “Resonant scanning in laser confocal microscopy,” , (Nikon Microscopy, 2000).

de Grooth, B. G.

R. M. Doornbos, B. G. de Grooth, and J. Greve, “Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry,” Cytometry 29, 204–214 (1997).
[CrossRef]

de Jong, J. G. S.

Q. Zhao, I. T. Young, and J. G. S. de Jong, “Photon budget analysis for fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 16, 086007 (2011).
[CrossRef]

Di Carlo, D.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Dieudonn, S.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Doornbos, R. M.

R. M. Doornbos, B. G. de Grooth, and J. Greve, “Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry,” Cytometry 29, 204–214 (1997).
[CrossRef]

Dunn, K. W.

E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. 218, 148–159 (2005).
[CrossRef]

Eigenwillig, C. M.

Fang, Q.

Fard, A.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Fard, A. M.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Fujimoto, J. G.

Fujita, K.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Gargesha, M.

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

Gora, M. J.

Gossett, D. R.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Greve, J.

R. M. Doornbos, B. G. de Grooth, and J. Greve, “Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry,” Cytometry 29, 204–214 (1997).
[CrossRef]

Holekamp, T. F.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[CrossRef]

Holy, T. E.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[CrossRef]

Huber, R.

Hur, S. C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Jalali, B.

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[CrossRef]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Performance of serial time-encoded amplified microscope,” Opt. Express 18, 10016–10028 (2010).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

Jenkins, M. W.

Kang, D.

Kawano, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Kawata, S.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

O. Nakamura and S. Kawata, “Three-dimensional transfer-function analysis of the tomographic capability of a confocal fluorescence microscope,” J. Opt. Soc. Am. 7, 522–526 (1990).
[CrossRef]

Kim, K. H.

Kim, M.

Kim, P.

Klein, T.

Kobayashi, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Kremer, Y.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Krichevsky, O.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Larson, J. M.

J. M. Larson, S. A. Schwartz, and M. W. Davidson, “Resonant scanning in laser confocal microscopy,” , (Nikon Microscopy, 2000).

Lau, A. K.

Lee, H.

Lee, H.-C.

Lee, Y.

Leung, R. W. K.

Lger, J.-F.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Liu, J. J.

Liu, Y.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Lonappan, C. K.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Mahjoubfar, A.

A. Mahjoubfar, C. Chen, K. R. Niazi, S. Rabizadeh, and B. Jalali, “Label-free high-throughput cell screening in flow,” Biomed. Opt. Express 4, 1618–1625 (2013).
[CrossRef]

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Malik, O.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Montigny, E. D.

Morneau, D.

Murray, C.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Nakamura, O.

O. Nakamura and S. Kawata, “Three-dimensional transfer-function analysis of the tomographic capability of a confocal fluorescence microscope,” J. Opt. Soc. Am. 7, 522–526 (1990).
[CrossRef]

Niazi, K. R.

Olivo-Marin, J.-C.

Papaioannou, T.

Patel, S.

V. Bansal, S. Patel, and P. Saggau, A High-Speed Confocal Laser-Scanning Microscope Based on Acousto-Optic Deflectors and a Digital Micromirror Device (Institute of Electrical and Electronics Engineers, 2003), pp. 2124–2127.

Pawley, J.

J. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 20–42.

Petty, H. R.

H. R. Petty, “Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70, 687–709 (2007).
[CrossRef]

H. R. Petty, “High speed microscopy in biomedical research,” Opt. Photon. News 15(1), 40–45 (2004).
[CrossRef]

Philip, J.

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. 20, 368–379 (2003).
[CrossRef]

Qiu, Y.

Rabizadeh, S.

Rollins, A. M.

Rothenberg, F.

Sadasivam, J.

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Saggau, P.

V. Bansal, S. Patel, and P. Saggau, A High-Speed Confocal Laser-Scanning Microscope Based on Acousto-Optic Deflectors and a Digital Micromirror Device (Institute of Electrical and Electronics Engineers, 2003), pp. 2124–2127.

Salom, R.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Sarkhosh, N.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Schlachter, S. C.

Schwartz, S. A.

J. M. Larson, S. A. Schwartz, and M. W. Davidson, “Resonant scanning in laser confocal microscopy,” , (Nikon Microscopy, 2000).

Semwogerere, D.

D. Semwogerere and E. R. Weeks, Confocal Microscopy (Encyclopedia of Biomaterials and Biomedical Engineering, 2005).

Sheikine, Y.

So, P. T.

Sollier, E.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Squire, A.

P. I. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).
[CrossRef]

Srinivasan, V. J.

Stelzer, E.

E. Stelzer, “Contrast, resolution, pixelation, dynamic range, and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
[CrossRef]

Stroud, R.

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

Strupler, M.

Tearney, G. J.

Tsia, K. K.

Turaga, D.

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[CrossRef]

Vacas-Jacques, P.

Visscher, K.

K. Visscher, G. J. Braeckmans, and T. D. Visser, “Fluorescence saturation in confocal microscopy,” J. Microsc. 175, 162–165 (1994).
[CrossRef]

Visser, T. D.

K. Visscher, G. J. Braeckmans, and T. D. Visser, “Fluorescence saturation in confocal microscopy,” J. Microsc. 175, 162–165 (1994).
[CrossRef]

Wang, C.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Wang, E.

E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. 218, 148–159 (2005).
[CrossRef]

Watanabe, M.

Waters, J. C.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
[CrossRef]

Weeks, E. R.

D. Semwogerere and E. R. Weeks, Confocal Microscopy (Encyclopedia of Biomaterials and Biomedical Engineering, 2005).

Wieser, W.

Wilson, D. L.

Wilsterman, E. J.

Wong, K. K.

Wong, K. K. Y.

Wong, T. T.

Woods, K.

Wu, J.

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef]

Wu, T.

Wyart, C.

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

Xu, J.

Yamanaka, M.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Yeh, S.-C. A.

Young, I. T.

Q. Zhao, I. T. Young, and J. G. S. de Jong, “Photon budget analysis for fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 16, 086007 (2011).
[CrossRef]

Yuan, Y.

Zerubia, J.

Zhang, B.

Zhang, C.

Zhao, Q.

Q. Zhao, I. T. Young, and J. G. S. de Jong, “Photon budget analysis for fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 16, 086007 (2011).
[CrossRef]

Zhu, R.

Appl. Opt.

Biomed. Opt. Express

Cytometry

R. M. Doornbos, B. G. de Grooth, and J. Greve, “Experimental and model investigations of bleaching and saturation of fluorescence in flow cytometry,” Cytometry 29, 204–214 (1997).
[CrossRef]

J. Biomed. Opt.

Q. Zhao, I. T. Young, and J. G. S. de Jong, “Photon budget analysis for fluorescence lifetime imaging microscopy,” J. Biomed. Opt. 16, 086007 (2011).
[CrossRef]

J. Cell Biol.

J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009).
[CrossRef]

J. Microsc.

E. Stelzer, “Contrast, resolution, pixelation, dynamic range, and signal-to-noise ratio: fundamental limits to resolution in fluorescence light microscopy,” J. Microsc. 189, 15–24 (1998).
[CrossRef]

E. Wang, C. M. Babbey, and K. W. Dunn, “Performance comparison between the high-speed Yokogawa spinning disc confocal system and single-point scanning confocal systems,” J. Microsc. 218, 148–159 (2005).
[CrossRef]

K. Visscher, G. J. Braeckmans, and T. D. Visser, “Fluorescence saturation in confocal microscopy,” J. Microsc. 175, 162–165 (1994).
[CrossRef]

J. Neurosci. Methods

R. Salom, Y. Kremer, S. Dieudonn, J.-F. Lger, O. Krichevsky, C. Wyart, D. Chatenay, and L. Bourdieu, “Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors,” J. Neurosci. Methods 154, 161–174 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Philip and K. Carlsson, “Theoretical investigation of the signal-to-noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. 20, 368–379 (2003).
[CrossRef]

O. Nakamura and S. Kawata, “Three-dimensional transfer-function analysis of the tomographic capability of a confocal fluorescence microscope,” J. Opt. Soc. Am. 7, 522–526 (1990).
[CrossRef]

Microsc. Res. Tech.

H. R. Petty, “Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70, 687–709 (2007).
[CrossRef]

G. C. Cianci, J. Wu, and K. M. Berland, “Saturation modified point spread functions in two-photon microscopy,” Microsc. Res. Tech. 64, 135–141 (2004).
[CrossRef]

Nat. Photonics

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[CrossRef]

Nature

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458, 1145–1149 (2009).
[CrossRef]

Neuron

T. F. Holekamp, D. Turaga, and T. E. Holy, “Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy,” Neuron 57, 661–672 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photon. News

H. R. Petty, “High speed microscopy in biomedical research,” Opt. Photon. News 15(1), 40–45 (2004).
[CrossRef]

Phys. Rev. Lett.

K. Fujita, M. Kobayashi, S. Kawano, M. Yamanaka, and S. Kawata, “High-resolution confocal microscopy by saturated excitation of fluorescence,” Phys. Rev. Lett. 99, 228105 (2007).
[CrossRef]

Proc. Natl. Acad. Sci. USA

K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012).
[CrossRef]

Sci. Rep.

K. Goda, A. Mahjoubfar, C. Wang, A. Fard, J. Adam, D. R. Gossett, A. Ayazi, E. Sollier, O. Malik, E. Chen, Y. Liu, R. Brown, N. Sarkhosh, D. Di Carlo, and B. Jalali, “Hybrid dispersion laser scanner,” Sci. Rep. 2, 1–8 (2012).
[CrossRef]

Trends Cell Biol.

P. I. Bastiaens and A. Squire, “Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell,” Trends Cell Biol. 9, 48–52 (1999).
[CrossRef]

Other

J. Pawley, “Fundamental limits in confocal microscopy,” in Handbook of Biological Confocal Microscopy (Springer, 2006), pp. 20–42.

J. M. Larson, S. A. Schwartz, and M. W. Davidson, “Resonant scanning in laser confocal microscopy,” , (Nikon Microscopy, 2000).

J. Xu and R. Stroud, Acousto-Optic Devices: Principles, Design, and Applications (Wiley, 1992).

V. Bansal, S. Patel, and P. Saggau, A High-Speed Confocal Laser-Scanning Microscope Based on Acousto-Optic Deflectors and a Digital Micromirror Device (Institute of Electrical and Electronics Engineers, 2003), pp. 2124–2127.

D. Semwogerere and E. R. Weeks, Confocal Microscopy (Encyclopedia of Biomaterials and Biomedical Engineering, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Generic schematic of an LSFM system. (a) Zoom-in view of the smeared fluorescence emission due to the fluorescence lifetime decay tail, which becomes significant under the high-speed scanning operation. (b) Simplified Jablonski diagram showing the key energy states of the fluorophores. The energy transitions are also shown therein. (Key: BD: beam deflector; OL: objective lens; DM: dichroic mirror; RL: relay-lens system; PD: photodiode.)

Fig. 2.
Fig. 2.

Defining resolution by contrast transfer function (CTF). (a) Resolution determined by the cut-off spatial frequency kRay at which the contrast C=25% (i.e., Rayleigh criterion). This is the case when the detectability limit D<25%, i.e., a low-noise system whose resolution is either diffraction-limited or lifetime-limited. (b) Resolution defined by the cut-off spatial frequency kDet at which the contrast C=D. This corresponds to the case when D>25%, i.e., the noisy system whose resolution is noise-limited.

Fig. 3.
Fig. 3.

Laser scanning-speed-dependent CTFs at the speed v=0.1, 1, and 10. The dashed and dotted–dashed lines represent the diffraction-limited approximation [Eq. (13)] and the lifetime-limited approximation [Eq. (14)], respectively. As the speed increases, the bandwidth of the CTF becomes narrower, i.e., the contrast and the resolution are degraded correspondingly.

Fig. 4.
Fig. 4.

Quantifying the impact of noise on image contrast. For a small object of size 2π/k to be visible in the presence of noise fluctuation, signal range (QmaxQmin) must be larger than signal variation (σ). In the noise-limited case, C=(QmaxQmin)/(2Q¯)=σ/Q¯=D, where D=1/SNR is the detectability limit.

Fig. 5.
Fig. 5.

Laser-scanning-speed-dependent resolution in LSFM. The scan speeds of the major laser scanning techniques are also labelled on the plot. Beyond v0.2, the resolution becomes speed-dependent (i.e., lifetime-limited). In contrast, the resolution is independent of the scan speed when v0.2.

Fig. 6.
Fig. 6.

Impact of noise on scanning-speed-dependent resolution of LSFM. Three excitation powers are chosen (red solid lines): 10%, 1%, and 0.1% of the saturation level. The three curves are obtained by evaluating the minimally resolvable feature size (in a unit of 2w), defined by detectability limit D, i.e., from the condition of Eq. (19). The actual resolution of the system is determined by the larger value of noise-limited resolution at a given excitation (red lines) and the resolution defined by the Rayleigh criterion (blue dashed line).

Fig. 7.
Fig. 7.

Laser-scanning-speed-dependent resolution at three different excitation flux levels: 0.1× (solid line), 1× (dashed line), and 10× (dashed–dotted line) saturation level. The three insets show the saturation-dependent emission profiles upon Gaussian beam excitation (dotted blue) at the speed of v=0.01, v=1, and v=5. The emission profiles at the three excitation fluxes are shifted relative to each other by 2w for clarity. From right to left: 0.1×, 1×, and 10× saturation level Q¯sat.

Fig. 8.
Fig. 8.

(a) Test target pattern (with 150 μm field-of-view) for numerical simulation of LSFM. The size of stripe pattern ranges from 2 to 20 μm. (b) Simulated image at different laser-scanning speeds (along the x-direction) and excitation flux levels (Q¯ex/Q¯sat). The linear scan is along the x-direction. The average detected photon count per pixel is shown in each image. The dotted lines, which roughly indicate the positions of the minimally resolvable strips, are drawn for visual aid. (c) Corresponding line scan profiles at v=0.01, v=1, and v=5 along the dotted line illustrated in (a).

Tables (3)

Tables Icon

Table 1. Rayleigh Resolution of Selected Beam Scanning Mechanisms for LSFM

Tables Icon

Table 2. Required Nyquist-Sampling Interval and Detectability Limit of LSFM based on Selected Laser Scanning Mechanismsa

Tables Icon

Table 3. Numerical Values used in the Simulation

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

v*=v×w/τ.
φex(x;t)=Q¯ex2πexp[12(xvt)2],
N1(x;t)=Ntot(x)p1(x;t).
dp1(x;t)dt=p1(x;t)+aw2φex(x;t)×[1p1(x;t)],
φem(x;t)=ηqNtot(x)p1(x;t)ΔA,
φem2(x2;t)=ηobj[φem(x;t)*|h(x)|2]x=x2/M,
Qem(t)=ηobjηqR+Rφem2(x2;t)dx2wΔA=ηobjηq+Ntot(x)p1(x;t)×R/M+R/M|h(xx)|2dxdxwΔA.
dp1dt=p1+ηabsQ¯exexp[12(xvt)2]×(1p1),
dp1dt=p1+ηabsQ¯exexp[12(xvt)2],
Q¯em(t)=ηobjηq+Ntot(x)p1(x;t)dxwΔA.
γ=Q¯em/Q¯ex=ηobjηqηabs×N¯tot×2πwΔA,
CTF(k)=exp(k2/2)v2k2+1,
CTF(k)exp(0.5k2)ifv1.
CTF(k)=1v2k2+1ifv1.
CTF(kRay)=exp(kRay2/2)v2kRay2+1=25%,
D=1SNR=σm.
m=Q¯emT=γQ¯exT.
CTF(kDet)=D=1m=1γQ¯exT.
exp(kDet2/2)v2kDet2+1=[γQ¯ex×πvkDet]1/2.
Q¯ex=0.1ηabs=0.1Q¯sat,
ιωp˜1(x;ω)=p˜1(x;ω)+ηabsQ¯ex×2πvexp(ω22v2)exp(ιxωv),
Q˜em(ω)=ηobjηq+Ntot(x)p˜1(x;ω)dxwΔA.
ιvkp˜1=p˜1+ηabsQ¯ex×2πvexp(12k2)exp(ιxk),
Q˜em(ω)=ηobjηq+Ntot(x)p˜1dxwΔA.
Q˜em(ω)=ηobjηqηabsexp(k2/2)1+ιvk×2πv+Ntot(x)×exp(ιxk)dxwΔA×Q¯ex.
Q˜em(ω)Q¯ex=ηobjηqηabsexp(k2/2)1+ιvk×2πvN˜tot(k)wΔAH(k)=vQ˜em(ω)/Q¯exN˜tot(k)=ηobjηqηabsexp(k2/2)1+ιvk2πwΔA.
vQ¯emδ(ω)/Q¯exN¯totδ(k)=ηobjηqηabs×2πwΔAγ=Q¯emQ¯ex=ηobjηqηabs×N¯tot×2πwΔA.
CTF(k)=|H(k)|γ=exp(k2/2)1+v2k2.

Metrics