Abstract

Based on the special electromagnetic properties of a 3D strong topological insulator (TI), we discuss, theoretically, the reflection of electromagnetic wave at the interface between a dielectric and a TI, and focus on the polarization conversion between the incident field and reflected field. Two cases, linear polarization and elliptical polarization at oblique incidence are considered. We derive the conditions required for the complete polarization conversion from incident s polarization into reflected p polarization, and vice versa. Furthermore, elliptical polarization incidence also can be modulated to linear or circular polarization after reflection, under special conditions, and the corresponding reflectivity can approach 1. All these special polarization behaviors originate from the intrinsic topological magnetoelectric coupling response in TI. This work provides promising applications of TIs on polarized devices and the polarization splitters.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Levy, “The on-chip integration of magneto optic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
    [CrossRef]
  2. K. Smith and A. A. Chabanov, “Enhanced transmission and nonreciprocal properties of a ferromagnetic metal layer in one-dimensional photonic crystals,” Integr. Ferroelectr. 131, 66–71 (2011).
    [CrossRef]
  3. V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
    [CrossRef]
  4. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
    [CrossRef]
  5. T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
    [CrossRef]
  6. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100, 051909 (2012).
    [CrossRef]
  7. C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
    [CrossRef]
  8. L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007).
    [CrossRef]
  9. X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
    [CrossRef]
  10. M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
    [CrossRef]
  11. J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
    [CrossRef]
  12. W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
    [CrossRef]
  13. Y. Lan, S. Wan, and S.-C. Zhang, “Generalized quantization condition for topological insulators,” Phys. Rev. B 83, 205109 (2011).
    [CrossRef]
  14. A. G. Grushin and A. Cortijo, “Tunable Casimir repulsion with three-dimensional topological insulators,” Phys. Rev. Lett. 106, 020403 (2011).
    [CrossRef]
  15. W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” Phys. Rev. B 88, 085421 (2013).
    [CrossRef]
  16. F. Liu, J. Xu, G. Song, and Y. Yang, “Goos-Hänchen and Imbert-Fedorov shifts at the interface of ordinary dielectric and topological insulator,” J. Opt. Soc. Am. B 30, 1167–1172 (2013).
    [CrossRef]
  17. Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electrodynamics,” Phys. Lett. A 341, 357–365 (2005).
    [CrossRef]
  18. R. C. Jones, “A new calculus for the treatment of optical systems,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [CrossRef]
  19. M. Born, E. Wolf, and A. B. E. Bhatic, Principles of Optics, 7th ed. (Cambridge University, 1993).
  20. J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
    [CrossRef]
  21. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  22. C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
    [CrossRef]

2013 (2)

2012 (1)

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100, 051909 (2012).
[CrossRef]

2011 (3)

K. Smith and A. A. Chabanov, “Enhanced transmission and nonreciprocal properties of a ferromagnetic metal layer in one-dimensional photonic crystals,” Integr. Ferroelectr. 131, 66–71 (2011).
[CrossRef]

Y. Lan, S. Wan, and S.-C. Zhang, “Generalized quantization condition for topological insulators,” Phys. Rev. B 83, 205109 (2011).
[CrossRef]

A. G. Grushin and A. Cortijo, “Tunable Casimir repulsion with three-dimensional topological insulators,” Phys. Rev. Lett. 106, 020403 (2011).
[CrossRef]

2010 (3)

J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[CrossRef]

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[CrossRef]

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[CrossRef]

2009 (1)

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[CrossRef]

2008 (3)

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[CrossRef]

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
[CrossRef]

2007 (2)

L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

2005 (2)

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[CrossRef]

Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electrodynamics,” Phys. Lett. A 341, 357–365 (2005).
[CrossRef]

2002 (1)

M. Levy, “The on-chip integration of magneto optic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
[CrossRef]

1993 (1)

C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
[CrossRef]

1941 (1)

Bhatic, A. B. E.

M. Born, E. Wolf, and A. B. E. Bhatic, Principles of Optics, 7th ed. (Cambridge University, 1993).

Born, M.

M. Born, E. Wolf, and A. B. E. Bhatic, Principles of Optics, 7th ed. (Cambridge University, 1993).

Chabanov, A. A.

K. Smith and A. A. Chabanov, “Enhanced transmission and nonreciprocal properties of a ferromagnetic metal layer in one-dimensional photonic crystals,” Integr. Ferroelectr. 131, 66–71 (2011).
[CrossRef]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Chang, M.-C.

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[CrossRef]

Chen, P.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Cortijo, A.

A. G. Grushin and A. Cortijo, “Tunable Casimir repulsion with three-dimensional topological insulators,” Phys. Rev. Lett. 106, 020403 (2011).
[CrossRef]

Drew, H. D.

J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[CrossRef]

Fu, L.

L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007).
[CrossRef]

Grushin, A. G.

A. G. Grushin and A. Cortijo, “Tunable Casimir repulsion with three-dimensional topological insulators,” Phys. Rev. Lett. 106, 020403 (2011).
[CrossRef]

Hao, J.

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Hehl, F. W.

Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electrodynamics,” Phys. Lett. A 341, 357–365 (2005).
[CrossRef]

Hughes, T. L.

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Jones, R. C.

Kane, C. L.

L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007).
[CrossRef]

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[CrossRef]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Lan, Y.

W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” Phys. Rev. B 88, 085421 (2013).
[CrossRef]

Y. Lan, S. Wan, and S.-C. Zhang, “Generalized quantization condition for topological insulators,” Phys. Rev. B 83, 205109 (2011).
[CrossRef]

Levy, M.

M. Levy, “The on-chip integration of magneto optic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
[CrossRef]

Li, T.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Li, T. Q.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Liu, F.

Liu, H.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

MacDonald, A. H.

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[CrossRef]

Maciejko, J.

J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[CrossRef]

Mele, E. J.

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[CrossRef]

Mitsas, C. L.

C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
[CrossRef]

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100, 051909 (2012).
[CrossRef]

Nie, W.

W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” Phys. Rev. B 88, 085421 (2013).
[CrossRef]

Obukhov, Y. N.

Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electrodynamics,” Phys. Lett. A 341, 357–365 (2005).
[CrossRef]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100, 051909 (2012).
[CrossRef]

Paraskevopoulos, K. M.

C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
[CrossRef]

Polychroniadis, E. K.

C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
[CrossRef]

Prosvirnin, S. L.

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[CrossRef]

Qi, X.-L.

J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[CrossRef]

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
[CrossRef]

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Siapkas, D. I.

C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
[CrossRef]

Smith, K.

K. Smith and A. A. Chabanov, “Enhanced transmission and nonreciprocal properties of a ferromagnetic metal layer in one-dimensional photonic crystals,” Integr. Ferroelectr. 131, 66–71 (2011).
[CrossRef]

Song, G.

Tse, W.-K.

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[CrossRef]

Tuz, V. R.

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[CrossRef]

Valassiades, O.

C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
[CrossRef]

Vidil, M. Y.

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[CrossRef]

Wan, S.

Y. Lan, S. Wan, and S.-C. Zhang, “Generalized quantization condition for topological insulators,” Phys. Rev. B 83, 205109 (2011).
[CrossRef]

Wang, F. M.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Wang, S. M.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, and A. B. E. Bhatic, Principles of Optics, 7th ed. (Cambridge University, 1993).

Wu, R. X.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Xu, J.

Yang, M.-F.

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[CrossRef]

Yang, Y.

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Zeng, R.

W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” Phys. Rev. B 88, 085421 (2013).
[CrossRef]

Zhang, S.-C.

Y. Lan, S. Wan, and S.-C. Zhang, “Generalized quantization condition for topological insulators,” Phys. Rev. B 83, 205109 (2011).
[CrossRef]

J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[CrossRef]

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
[CrossRef]

Zhang, X.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Zhou, L.

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

Zhu, S.

W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” Phys. Rev. B 88, 085421 (2013).
[CrossRef]

Zhu, S. N.

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

T. Q. Li, H. Liu, T. Li, S. M. Wang, F. M. Wang, R. X. Wu, P. Chen, S. N. Zhu, and X. Zhang, “Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial,” Appl. Phys. Lett. 92, 131111 (2008).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett. 100, 051909 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Levy, “The on-chip integration of magneto optic waveguide isolators,” IEEE J. Sel. Top. Quantum Electron. 8, 1300–1306 (2002).
[CrossRef]

Integr. Ferroelectr. (1)

K. Smith and A. A. Chabanov, “Enhanced transmission and nonreciprocal properties of a ferromagnetic metal layer in one-dimensional photonic crystals,” Integr. Ferroelectr. 131, 66–71 (2011).
[CrossRef]

J. Opt. (1)

V. R. Tuz, M. Y. Vidil, and S. L. Prosvirnin, “Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance,” J. Opt. 12, 095102 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Phys. Lett. A (1)

Y. N. Obukhov and F. W. Hehl, “Measuring a piecewise constant axion field in classical electrodynamics,” Phys. Lett. A 341, 357–365 (2005).
[CrossRef]

Phys. Rev. B (6)

Y. Lan, S. Wan, and S.-C. Zhang, “Generalized quantization condition for topological insulators,” Phys. Rev. B 83, 205109 (2011).
[CrossRef]

L. Fu and C. L. Kane, “Topological insulators with inversion symmetry,” Phys. Rev. B 76, 045302 (2007).
[CrossRef]

X.-L. Qi, T. L. Hughes, and S.-C. Zhang, “Topological field theory of time-reversal invariant insulators,” Phys. Rev. B 78, 195424 (2008).
[CrossRef]

M.-C. Chang and M.-F. Yang, “Optical signature of topological insulators,” Phys. Rev. B 80, 113304 (2009).
[CrossRef]

J. Hao and L. Zhou, “Electromagnetic wave scatterings by anisotropic metamaterials: generalized 4 × 4 transfer-matrix method,” Phys. Rev. B 77, 094201 (2008).
[CrossRef]

W. Nie, R. Zeng, Y. Lan, and S. Zhu, “Casimir force between topological insulator slabs,” Phys. Rev. B 88, 085421 (2013).
[CrossRef]

Phys. Rev. Lett. (5)

J. Maciejko, X.-L. Qi, H. D. Drew, and S.-C. Zhang, “Topological quantization in units of the fine structure constant,” Phys. Rev. Lett. 105, 166803 (2010).
[CrossRef]

W.-K. Tse and A. H. MacDonald, “Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators,” Phys. Rev. Lett. 105, 057401 (2010).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett. 99, 063908 (2007).
[CrossRef]

A. G. Grushin and A. Cortijo, “Tunable Casimir repulsion with three-dimensional topological insulators,” Phys. Rev. Lett. 106, 020403 (2011).
[CrossRef]

C. L. Kane and E. J. Mele, “Z2 topological order and the quantum spin hall effect,” Phys. Rev. Lett. 95, 146802 (2005).
[CrossRef]

Phys. Status Solid A (1)

C. L. Mitsas, D. I. Siapkas, E. K. Polychroniadis, O. Valassiades, and K. M. Paraskevopoulos, “Growth, electrical, and optical properties of TlBiSe2 single crystals,” Phys. Status Solid A 136, 483–495 (1993).
[CrossRef]

Other (2)

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

M. Born, E. Wolf, and A. B. E. Bhatic, Principles of Optics, 7th ed. (Cambridge University, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of reflection and refraction at the interface of a semi-infinite ordinary dielectric (ε1, μ1, Θ1=0) and semi-infinite TI (ε2, μ2, Θ2). Vectors Ei, Er, and Et represent the polarizations of the incident, reflected, and refracted electric field. θ1 and θ2 are the incident angle and refracted angle, respectively. γ denotes the polarization angle of the incident electric field.

Fig. 2.
Fig. 2.

(a) and (b) present direct reflectivity and cross reflectivity and (c) polarization conversion ratios vary with incident angle as the s wave is incoming on the interface for different ε2 values. Here, ε1=9. The vertical dashed lines represent the positions of θc, for ε2=ε1(α/ε0c)2, 3, 6.

Fig. 3.
Fig. 3.

(a) Difference between two components’ phases, Δφ=φmφn and (b) variation of angle, β, with the incident angle; (c) reflected polarization state with different incident angles. Here, ε2=3 and ε1=9. The case of ε2=ε1=9 is presented with the red line in (b) for comparison, where β=24.6° is a constant.

Fig. 4.
Fig. 4.

Incident angle dependence of the reflectivity of p and s components inside the reflected wave and the PCR for different TI permittivity, ε2, as the p wave is obliquely incident on the single interface. Here, ε1=1.

Fig. 5.
Fig. 5.

Incident angle dependence of the reflectivity of the s component inside the reflected wave, the PCR, and their difference phase as ε2=2 (black dot) and ε2=ε1(α/ε0c)2 (red dot). Here, ε1=10.

Fig. 6.
Fig. 6.

(a) s and p components and their phase difference vary with angle, γ, as θ1>θc, and (b) concrete polarizations at five specific γ angles, respectively. Here, δ=+π/2, ε1=9. ε2=ε1(α/ε0c)2.

Tables (2)

Tables Icon

Table 1. Index Relation Required for Linear Polarization Complete Conversion

Tables Icon

Table 2. Conditions Required for Conversion from Incident Elliptical Polarization Into the Reflected Pure s or p Polarization

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

D=ε0εE+(Θπ)αB,H=1μ0μB(Θπ)αE.
Ei=J(γ,δ)=(cosγeiδsinγ)ei(k1xx+k1zz)=(aeiδb)ei(k1xx+k1zz).
Er=(mn)ei(k1xxk1zz),=(rssrsprpsrpp)(aeiδb)ei(k1xxk1zz),=R(aeiδb)ei(k1xxk1zz),
R=(rssrsprpsrpp).
rss={ε1μ1ε2μ2(αε0cΘ2Θ1π)2+ε1ε2μ1μ2(cosθ1cosθ2cosθ2cosθ1)}/Δ,rsp=2(ε1μ1αε0cΘ2Θ1π)/Δ,rps=2(ε1μ1αε0cΘ2Θ1π)/Δ,rpp={ε1μ1+ε2μ2+(αε0cΘ2Θ1π)2+ε1ε2μ1μ2(cosθ1cosθ2cosθ2cosθ1)}/Δ,
Δ=ε1μ1+ε2μ2+(αε0cΘ2Θ1π)2+ε1μ1ε2μ2(cosθ1cosθ2+cosθ2cosθ1).
PCR=|rsp|2|rsp|2+|rss|2,

Metrics