Abstract

We observe the phenomenon of the Faraday-like effect, which occurs in periodically poled lithium niobate with odd number of domains (OPPLN) by the transverse electro-optic (EO) effect under the quasi-phase-matching condition. In this case, light rotates in the reverse sense during the forward and the backward path, and OPPLN shows a nonreciprocal process that is similar to the magneto-optical Faraday effect, which has served as a routine method for achieving optical isolation. Therefore, a feasible scheme for an EO optical isolator based on the Faraday-like effect by adding an additional semi-domain to OPPLN is also proposed in this article.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
    [CrossRef]
  2. S. J. Zhou, M. Cui, and C. H. Wen, “Magnetic-field sensing technique based on the Faraday effect,” J. PLA Univ. Sci. Technol. 4, 27–30 (2003).
  3. G. X. Du, S. Saito, and M. Takahashi, “Fast magneto-optical spectrometry by spectrometer,” Rev. Sci. Instrum. 83, 013103 (2012).
    [CrossRef]
  4. J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007).
    [CrossRef]
  5. J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
    [CrossRef]
  6. H. Lee, “Optical isolator using acousto-optic and Faraday effects,” Appl. Opt. 26, 969–970 (1987).
    [CrossRef]
  7. J. P. Castéra and G. Hepner, “Isolator in integrated optics using Faraday and Cotton-Mouton effects,” Appl. Opt. 16, 2031–2033 (1977).
    [CrossRef]
  8. L. J. Aplet and J. W. Carson, “A Faraday effect optical isolator,” Appl. Opt. 3, 544–545 (1964).
    [CrossRef]
  9. G. A. Laguna, “Source noise reduction in diode laser spectroscopy using the Faraday effect,” Appl. Opt. 23, 2155–2158 (1984).
    [CrossRef]
  10. A. L. Merchant, S. Händel, T. P. Wiles, S. A. Hopkins, C. S. Adams, and S. L. Cornish, “Off-resonance laser frequency stabilization using the Faraday effect,” Opt. Lett. 36, 64–66 (2011).
    [CrossRef]
  11. L. Shi, L. H. Tian, and X. F. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112, 073103 (2012).
    [CrossRef]
  12. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).
    [CrossRef]
  13. G. Zheng, H. Wang, and W. She, “Wave coupling theory of quasi-phase-matched linear electro-optic effect,” Opt. Express 14, 5535–5540 (2006).
    [CrossRef]
  14. W. J. Lu, Y. P. Chen, L. H. Miu, X. F. Chen, Y. X. Xia, and X. L. Zeng, “All-optical tunable group-velocity control of femtosecond pulse by quadratic nonlinear cascading interactions,” Opt. Express 16, 355–361 (2008).
    [CrossRef]
  15. Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
    [CrossRef]
  16. H. S. Bernett and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137, A448–A461 (1965).
    [CrossRef]
  17. X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
    [CrossRef]
  18. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
    [CrossRef]
  19. Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
    [CrossRef]
  20. K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
    [CrossRef]
  21. M. Soljacic, C. Y. Luo, J. D. Joannopoulos, and S. H. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
    [CrossRef]

2012 (2)

G. X. Du, S. Saito, and M. Takahashi, “Fast magneto-optical spectrometry by spectrometer,” Rev. Sci. Instrum. 83, 013103 (2012).
[CrossRef]

L. Shi, L. H. Tian, and X. F. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112, 073103 (2012).
[CrossRef]

2011 (3)

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
[CrossRef]

A. L. Merchant, S. Händel, T. P. Wiles, S. A. Hopkins, C. S. Adams, and S. L. Cornish, “Off-resonance laser frequency stabilization using the Faraday effect,” Opt. Lett. 36, 64–66 (2011).
[CrossRef]

2009 (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

2008 (1)

2007 (1)

J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007).
[CrossRef]

2006 (1)

2005 (1)

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

2003 (2)

S. J. Zhou, M. Cui, and C. H. Wen, “Magnetic-field sensing technique based on the Faraday effect,” J. PLA Univ. Sci. Technol. 4, 27–30 (2003).

M. Soljacic, C. Y. Luo, J. D. Joannopoulos, and S. H. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
[CrossRef]

2001 (1)

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[CrossRef]

2000 (2)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

1999 (1)

1987 (1)

1984 (1)

1977 (1)

1965 (1)

H. S. Bernett and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137, A448–A461 (1965).
[CrossRef]

1964 (1)

Adams, C. S.

Aplet, L. J.

Assanto, G.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[CrossRef]

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).
[CrossRef]

Bernett, H. S.

H. S. Bernett and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137, A448–A461 (1965).
[CrossRef]

Carson, J. W.

Castéra, J. P.

Chan, C. T.

Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
[CrossRef]

Chen, X. F.

Chen, Y. P.

Cho, D.

J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007).
[CrossRef]

Choi, J. M.

J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007).
[CrossRef]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Cornish, S. L.

Cui, M.

S. J. Zhou, M. Cui, and C. H. Wen, “Magnetic-field sensing technique based on the Faraday effect,” J. PLA Univ. Sci. Technol. 4, 27–30 (2003).

DIckel, J. R.

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Dickey, J. M.

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Dotsch, H.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Du, G. X.

G. X. Du, S. Saito, and M. Takahashi, “Fast magneto-optical spectrometry by spectrometer,” Rev. Sci. Instrum. 83, 013103 (2012).
[CrossRef]

Fan, S. H.

Fejer, M. M.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[CrossRef]

Fujita, J.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Gaensler, B. M.

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Gallo, K.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[CrossRef]

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16, 741–753 (1999).
[CrossRef]

Gong, Q. H.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Griffiths, N. M.

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Händel, S.

Haverkorn, M.

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Hepner, G.

Hopkins, S. A.

Hu, X. Y.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

M. Soljacic, C. Y. Luo, J. D. Joannopoulos, and S. H. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
[CrossRef]

Kim, J. M.

J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007).
[CrossRef]

Laguna, G. A.

Lee, H.

Levy, M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Li, Z. Q.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Lin, Z. F.

Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
[CrossRef]

Lu, W. J.

Lu, Y. Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Luo, C. Y.

Merchant, A. L.

Min, N. B.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Miu, L. H.

Osgood, R. M.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Parameswaran, K. R.

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[CrossRef]

Park, Q. H.

J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007).
[CrossRef]

Poo, Y.

Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
[CrossRef]

Saito, S.

G. X. Du, S. Saito, and M. Takahashi, “Fast magneto-optical spectrometry by spectrometer,” Rev. Sci. Instrum. 83, 013103 (2012).
[CrossRef]

She, W.

Shi, L.

L. Shi, L. H. Tian, and X. F. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112, 073103 (2012).
[CrossRef]

Smith, L. S.

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

M. Soljacic, C. Y. Luo, J. D. Joannopoulos, and S. H. Fan, “Nonlinear photonic crystal microdevices for optical integration,” Opt. Lett. 28, 637–639 (2003).
[CrossRef]

Stern, E. A.

H. S. Bernett and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137, A448–A461 (1965).
[CrossRef]

Takahashi, M.

G. X. Du, S. Saito, and M. Takahashi, “Fast magneto-optical spectrometry by spectrometer,” Rev. Sci. Instrum. 83, 013103 (2012).
[CrossRef]

Tian, L. H.

L. Shi, L. H. Tian, and X. F. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112, 073103 (2012).
[CrossRef]

Wan, Z. L.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Wang, H.

Wang, Q.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Wen, C. H.

S. J. Zhou, M. Cui, and C. H. Wen, “Magnetic-field sensing technique based on the Faraday effect,” J. PLA Univ. Sci. Technol. 4, 27–30 (2003).

Wiles, T. P.

Wilkens, L.

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

Wolleben, M.

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Wu, R. X.

Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
[CrossRef]

Xi, Y. X.

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

Xia, Y. X.

Yang, H.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Yang, Y.

Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
[CrossRef]

Zeng, X. L.

Zhang, J. X.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Zhang, X. P.

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Zheng, G.

Zhou, S. J.

S. J. Zhou, M. Cui, and C. H. Wen, “Magnetic-field sensing technique based on the Faraday effect,” J. PLA Univ. Sci. Technol. 4, 27–30 (2003).

Adv. Funct. Mater. (1)

X. Y. Hu, Z. Q. Li, J. X. Zhang, H. Yang, Q. H. Gong, and X. P. Zhang, “Low-power and high-contrast nanoscale all-optical diodes via nanocomposite photonic crystal microcavities,” Adv. Funct. Mater. 21, 1803–1809 (2011).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (3)

Y. Q. Lu, Z. L. Wan, Q. Wang, Y. X. Xi, and N. B. Min, “Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications,” Appl. Phys. Lett. 77, 3719–3721 (2000).
[CrossRef]

K. Gallo, G. Assanto, K. R. Parameswaran, and M. M. Fejer, “All-optical diode in a periodically poled lithium niobate waveguide,” Appl. Phys. Lett. 79, 314–316 (2001).
[CrossRef]

J. Fujita, M. Levy, R. M. Osgood, L. Wilkens, and H. Dotsch, “Waveguide optical isolator based on Mach–Zehnder interferometer,” Appl. Phys. Lett. 76, 2158–2160 (2000).
[CrossRef]

J. Appl. Phys. (1)

L. Shi, L. H. Tian, and X. F. Chen, “Electro-optic chirality control in MgO:PPLN,” J. Appl. Phys. 112, 073103 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. PLA Univ. Sci. Technol. (1)

S. J. Zhou, M. Cui, and C. H. Wen, “Magnetic-field sensing technique based on the Faraday effect,” J. PLA Univ. Sci. Technol. 4, 27–30 (2003).

Nature (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. (1)

H. S. Bernett and E. A. Stern, “Faraday effect in solids,” Phys. Rev. 137, A448–A461 (1965).
[CrossRef]

Phys. Rev. A (1)

J. M. Choi, J. M. Kim, Q. H. Park, and D. Cho, “Optically induced Faraday effect in a lambda configuration of spin-polarized cold cesium atoms,” Phys. Rev. A 75, 138151 (2007).
[CrossRef]

Phys. Rev. Lett. (1)

Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, and C. T. Chan, “Experimental realization of self-guiding unidirectional electromagnetic edge states,” Phys. Rev. Lett. 106, 093903 (2011).
[CrossRef]

Rev. Sci. Instrum. (1)

G. X. Du, S. Saito, and M. Takahashi, “Fast magneto-optical spectrometry by spectrometer,” Rev. Sci. Instrum. 83, 013103 (2012).
[CrossRef]

Science (1)

B. M. Gaensler, M. Haverkorn, L. S. Smith, J. M. Dickey, N. M. Griffiths, J. R. DIckel, and M. Wolleben, “The magnetic field of the large magellanic cloud revealed through Faraday rotation,” Science 307, 1610–1612 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of Faraday-like effect. (a) Structure of OPPLN. The OPPLN is z-cut. The arrows inside the OPPLN indicate the spontaneous polarization directions. (b) Observed rotation of the principal axes and final rotation direction of the polarization direction when a transverse electric field is applied. Deformation of the index ellipsoid is observed for a forward (light traveling along the +x axis) and backward (light traveling along the x axis) light under an +E electric field (+ and − represent transverse electric field along +y and y axis). x, y, and z represent the principal axes of the original index ellipsoid. yp,n and zp,n are the perturbed principal axes of positive and negative domains, respectively. The incident light is z-polarized.

Fig. 2.
Fig. 2.

Experimental measurement of the electric Verdet constant. The electric Verdet constant is given as the quotient of the slope of the rotation angle versus electric field curve divided by the interacting length of light in OPPLN.

Fig. 3.
Fig. 3.

Experimental setup for demonstrating the Faraday-like effect in MgO:OPPLN. The MgO:OPPLN crystal is z cut. A uniform electric field is applied on MgO:OPPLN along the +y axis. Two polarization-beam-splitters (PBSs) are placed perpendicularly to each other. (a) Forward path: PBS1 y-oriented, PBS2 z-oriented. (b) Backward path: PBS1 z-oriented, PBS2 y-oriented.

Fig. 4.
Fig. 4.

Normalized transmittance of forward and backward light in MgO:PPLN. The MgO:OPPLN sample and working environment are the same as those in the electric Verdet constant measurement. Pink and blue bubbles represent experiment results, and the dash and solid line represent standard sinusoid and cosinusoid.

Fig. 5.
Fig. 5.

Variations of the rotation angle with the incident azimuth angles the forward and the backward light. The MgO:OPPLN sample and working environment are the same as the previous description. Green and yellow regions represent the range of the incident azimuth angle of the forward or backward light that satisfies the Faraday-like effect condition.

Fig. 6.
Fig. 6.

Schematic diagram of an EO optical isolator based on Faraday-like effect. (a) Evolution process of the polarization state of light in the EO isolator. The arrows in blue indicate the polarization plane of the linearly polarized light, and the circles with an arrow represent circularly polarized light. (b) Normalized transmittance of the forward and backward light Tf and Tb as a function of the electric field. (c) Contrast ratio as a function of the electric field.

Metrics