Abstract

We report the excitation of non-steady-state photoelectromotive force and two-wave mixing signals using uniformly accelerated motion of the recording light pattern. Such illumination is created by linear frequency modulation of the interfering light beams. The pulse response is predicted theoretically and observed experimentally in GaAs and Bi12TiO20 crystals at λ=633nm. The evolution of the pulse shape versus sweep rate is demonstrated and explained in the frames of the developed theory. The application of the effects in laser Doppler velocimeters and accelerometers is discussed as well.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications II, Vol. 62 of Topics in Applied Physics (Springer, 1989).
  2. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer, 1991).
  3. S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
    [CrossRef]
  4. R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
    [CrossRef]
  5. C. C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
    [CrossRef]
  6. C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
    [CrossRef]
  7. D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
    [CrossRef]
  8. P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high-amplitude vibrations on rough surfaces,” J. Opt. A 2, 209–215 (2000).
    [CrossRef]
  9. A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
    [CrossRef]
  10. A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
    [CrossRef]
  11. S. Mansurova, P. Moreno Zarate, P. Rodriguez, S. Stepanov, S. Köber, and K. Meerholz, “Non-steady-state photoelectromotive force effect under linear and periodical phase modulation: application to detection of Doppler frequency shift,” Opt. Lett. 37, 383–385 (2012).
    [CrossRef]
  12. G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).
  13. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  14. I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
    [CrossRef]
  15. N. V. Kukhtarev, T. Kukhtareva, S. F. Lyuksyutov, M. A. Reagan, P. P. Banerjee, and P. Buchhave, “Running gratings in photoconductive materials,” J. Opt. Soc. Am. B 22, 1917–1922 (2005).
    [CrossRef]
  16. U. Haken, M. Hundhausen, and L. Ley, “Analysis of the moving-photocarrier-grating technique for the determination of mobility and lifetime of photocarriers in semiconductors,” Phys. Rev. B 51, 10579–10590 (1995).
    [CrossRef]
  17. J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
    [CrossRef]
  18. G. C. Valley, “Two-wave mixing with an applied field and a moving grating,” J. Opt. Soc. Am. B 1, 868–873 (1984).
    [CrossRef]
  19. P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
    [CrossRef]
  20. A. A. Kamshilin, J. Frejlich, and L. Cescato, “Photorefractive crystals for the stabilization of the holographic setup,” Appl. Opt. 25, 2375–2381 (1986).
    [CrossRef]
  21. S. Bian and J. Frejlich, “Phase modulated two-wave mixing in crystals with long photocarrier lifetimes,” J. Mod. Opt. 43, 1185–1198 (1996).
    [CrossRef]
  22. H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
    [CrossRef]
  23. M. C. Gather, S. Mansurova, and K. Meerholz, “Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique,” Phys. Rev. B 75, 165203 (2007).
    [CrossRef]
  24. T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010).
    [CrossRef]
  25. I. de Oliveira, A. A. Freschi, I. Fier, and J. Frejlich, “Stabilized photorefractive running holograms, with arbitrarily selected phase shift, for material characterization,” Opt. Mater. Express 2, 228–234 (2012).
    [CrossRef]
  26. G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).
  27. S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).
  28. N. A. Korneev and S. I. Stepanov, “Non-steady-state photoelectromotive force in semiconductor crystals with high light absorption,” J. Appl. Phys. 74, 2736–2741 (1993).
    [CrossRef]
  29. N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
    [CrossRef]
  30. G. Pauliat and G. Roosen, “Theoretical and experimental study of diffraction in optically active and linearly birefringent sillenite crystals,” Ferroelectrics 75, 281–294 (1987).
    [CrossRef]
  31. A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
    [CrossRef]
  32. R. V. Romashko, S. Di Girolamo, Y. N. Kulchin, and A. A. Kamshilin, “Photorefractive vectorial wave mixing in different geometries,” J. Opt. Soc. Am. B 27, 311–317 (2010).
    [CrossRef]
  33. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).
  34. R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).
  35. I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

2012 (2)

2011 (1)

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

2010 (2)

T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010).
[CrossRef]

R. V. Romashko, S. Di Girolamo, Y. N. Kulchin, and A. A. Kamshilin, “Photorefractive vectorial wave mixing in different geometries,” J. Opt. Soc. Am. B 27, 311–317 (2010).
[CrossRef]

2009 (1)

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

2007 (1)

M. C. Gather, S. Mansurova, and K. Meerholz, “Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique,” Phys. Rev. B 75, 165203 (2007).
[CrossRef]

2005 (2)

N. V. Kukhtarev, T. Kukhtareva, S. F. Lyuksyutov, M. A. Reagan, P. P. Banerjee, and P. Buchhave, “Running gratings in photoconductive materials,” J. Opt. Soc. Am. B 22, 1917–1922 (2005).
[CrossRef]

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

2000 (1)

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high-amplitude vibrations on rough surfaces,” J. Opt. A 2, 209–215 (2000).
[CrossRef]

1999 (2)

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
[CrossRef]

1997 (1)

C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

1996 (1)

S. Bian and J. Frejlich, “Phase modulated two-wave mixing in crystals with long photocarrier lifetimes,” J. Mod. Opt. 43, 1185–1198 (1996).
[CrossRef]

1995 (3)

U. Haken, M. Hundhausen, and L. Ley, “Analysis of the moving-photocarrier-grating technique for the determination of mobility and lifetime of photocarriers in semiconductors,” Phys. Rev. B 51, 10579–10590 (1995).
[CrossRef]

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

C. C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef]

1993 (2)

N. A. Korneev and S. I. Stepanov, “Non-steady-state photoelectromotive force in semiconductor crystals with high light absorption,” J. Appl. Phys. 74, 2736–2741 (1993).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[CrossRef]

1991 (1)

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

1990 (2)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef]

1989 (1)

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

1987 (2)

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

G. Pauliat and G. Roosen, “Theoretical and experimental study of diffraction in optically active and linearly birefringent sillenite crystals,” Ferroelectrics 75, 281–294 (1987).
[CrossRef]

1986 (2)

A. A. Kamshilin, J. Frejlich, and L. Cescato, “Photorefractive crystals for the stabilization of the holographic setup,” Appl. Opt. 25, 2375–2381 (1986).
[CrossRef]

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

1985 (1)

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

1984 (1)

1981 (1)

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

Apostol, I.

Bacher, G. D.

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

Banerjee, P. P.

Bian, S.

S. Bian and J. Frejlich, “Phase modulated two-wave mixing in crystals with long photocarrier lifetimes,” J. Mod. Opt. 43, 1185–1198 (1996).
[CrossRef]

Bryushinin, M. A.

I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Buchhave, P.

Burckhardt, C. B.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Burimov, N. I.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Buse, K.

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
[CrossRef]

Bykov, V. I.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

Cescato, L.

Collier, R. J.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Coy, J. A.

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

Davidson, F.

de Oliveira, I.

de Rossi, S.

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high-amplitude vibrations on rough surfaces,” J. Opt. A 2, 209–215 (2000).
[CrossRef]

Delaye, P.

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high-amplitude vibrations on rough surfaces,” J. Opt. A 2, 209–215 (2000).
[CrossRef]

Di Girolamo, S.

dos Santos, T. O.

T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010).
[CrossRef]

Dunning, G. J.

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

Egorysheva, A. V.

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Fier, I.

Frejlich, J.

I. de Oliveira, A. A. Freschi, I. Fier, and J. Frejlich, “Stabilized photorefractive running holograms, with arbitrarily selected phase shift, for material characterization,” Opt. Mater. Express 2, 228–234 (2012).
[CrossRef]

T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010).
[CrossRef]

S. Bian and J. Frejlich, “Phase modulated two-wave mixing in crystals with long photocarrier lifetimes,” J. Mod. Opt. 43, 1185–1198 (1996).
[CrossRef]

A. A. Kamshilin, J. Frejlich, and L. Cescato, “Photorefractive crystals for the stabilization of the holographic setup,” Appl. Opt. 25, 2375–2381 (1986).
[CrossRef]

Freschi, A. A.

Gather, M. C.

M. C. Gather, S. Mansurova, and K. Meerholz, “Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique,” Phys. Rev. B 75, 165203 (2007).
[CrossRef]

Grattan, K. T. V.

I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Günter, P.

P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications II, Vol. 62 of Topics in Applied Physics (Springer, 1989).

Haken, U.

U. Haken, M. Hundhausen, and L. Ley, “Analysis of the moving-photocarrier-grating technique for the determination of mobility and lifetime of photocarriers in semiconductors,” Phys. Rev. B 51, 10579–10590 (1995).
[CrossRef]

Hess, P.

I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Huignard, J. P.

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

Huignard, J.-P.

P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications II, Vol. 62 of Topics in Applied Physics (Springer, 1989).

Hundhausen, M.

U. Haken, M. Hundhausen, and L. Ley, “Analysis of the moving-photocarrier-grating technique for the determination of mobility and lifetime of photocarriers in semiconductors,” Phys. Rev. B 51, 10579–10590 (1995).
[CrossRef]

Ing, R. K.

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Jones, R.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

Kabanova, L. A.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

Kamshilin, A. A.

Kargin, Y. F.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Khan, S. H.

I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer, 1991).

Klein, M. B.

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

Köber, S.

Kolegov, A. A.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

Korneev, N.

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
[CrossRef]

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

Korneev, N. A.

N. A. Korneev and S. I. Stepanov, “Non-steady-state photoelectromotive force in semiconductor crystals with high light absorption,” J. Appl. Phys. 74, 2736–2741 (1993).
[CrossRef]

Krasin’kova, M. V.

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

Krätzig, E.

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
[CrossRef]

Kukhtarev, N. V.

Kukhtareva, T.

Kulchin, Y. N.

R. V. Romashko, S. Di Girolamo, Y. N. Kulchin, and A. A. Kamshilin, “Photorefractive vectorial wave mixing in different geometries,” J. Opt. Soc. Am. B 27, 311–317 (2010).
[CrossRef]

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

Kulikov, V. V.

I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Ley, L.

U. Haken, M. Hundhausen, and L. Ley, “Analysis of the moving-photocarrier-grating technique for the determination of mobility and lifetime of photocarriers in semiconductors,” Phys. Rev. B 51, 10579–10590 (1995).
[CrossRef]

Lin, L. H.

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

Linke, R. A.

C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Lyuksyutov, S. F.

Mandel, A. E.

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Mansurova, S.

S. Mansurova, P. Moreno Zarate, P. Rodriguez, S. Stepanov, S. Köber, and K. Meerholz, “Non-steady-state photoelectromotive force effect under linear and periodical phase modulation: application to detection of Doppler frequency shift,” Opt. Lett. 37, 383–385 (2012).
[CrossRef]

M. C. Gather, S. Mansurova, and K. Meerholz, “Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique,” Phys. Rev. B 75, 165203 (2007).
[CrossRef]

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

Marrakchi, A.

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

Mart’yanov, A. G.

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Mayorga, D.

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
[CrossRef]

Meerholz, K.

S. Mansurova, P. Moreno Zarate, P. Rodriguez, S. Stepanov, S. Köber, and K. Meerholz, “Non-steady-state photoelectromotive force effect under linear and periodical phase modulation: application to detection of Doppler frequency shift,” Opt. Lett. 37, 383–385 (2012).
[CrossRef]

M. C. Gather, S. Mansurova, and K. Meerholz, “Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique,” Phys. Rev. B 75, 165203 (2007).
[CrossRef]

Melloch, M. R.

C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Monchalin, J.-P.

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

Moreno Zarate, P.

Nolte, D. D.

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Pauliat, G.

G. Pauliat and G. Roosen, “Theoretical and experimental study of diffraction in optically active and linearly birefringent sillenite crystals,” Ferroelectrics 75, 281–294 (1987).
[CrossRef]

Pepper, D. M.

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer, 1991).

Plesovskikh, A. M.

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Popa, D.

Pouet, B.

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

Rajbenbach, H.

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Reagan, M. A.

Refregier, P.

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Rodriguez, P.

Romashko, R. V.

R. V. Romashko, S. Di Girolamo, Y. N. Kulchin, and A. A. Kamshilin, “Photorefractive vectorial wave mixing in different geometries,” J. Opt. Soc. Am. B 27, 311–317 (2010).
[CrossRef]

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

Roosen, G.

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high-amplitude vibrations on rough surfaces,” J. Opt. A 2, 209–215 (2000).
[CrossRef]

G. Pauliat and G. Roosen, “Theoretical and experimental study of diffraction in optically active and linearly birefringent sillenite crystals,” Ferroelectrics 75, 281–294 (1987).
[CrossRef]

Shaganova, E. A.

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Shandarov, S. M.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Shcherbin, K.

T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010).
[CrossRef]

Shmakov, S. S.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

Simonova, G. V.

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

Sokolov, I. A.

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Solymar, L.

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

Stepanov, S.

Stepanov, S. I.

N. A. Korneev and S. I. Stepanov, “Non-steady-state photoelectromotive force in semiconductor crystals with high light absorption,” J. Appl. Phys. 74, 2736–2741 (1993).
[CrossRef]

I. A. Sokolov and S. I. Stepanov, “Non-steady-state photoelectromotive force in crystals with long photocarrier lifetimes,” J. Opt. Soc. Am. B 10, 1483–1488 (1993).
[CrossRef]

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer, 1991).

Trivedi, S.

C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

C. C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef]

Trofimov, G. S.

S. I. Stepanov, I. A. Sokolov, G. S. Trofimov, V. I. Vlad, D. Popa, and I. Apostol, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

Valley, G. C.

Veenhuis, H.

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
[CrossRef]

Vlad, V. I.

Volkov, V. V.

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Wang, C. C.

C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

C. C. Wang, F. Davidson, and S. Trivedi, “Simple laser velocimeter that uses photoconductive semiconductors to measure optical frequency differences,” Appl. Opt. 34, 6496–6499 (1995).
[CrossRef]

Wykes, C.

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

Appl. Opt. (2)

Appl. Phys. B (1)

T. O. dos Santos, J. Frejlich, and K. Shcherbin, “Photo electromotive force in CdTe:Ge: manifestation of two photorefractive centers,” Appl. Phys. B 99, 701–707 (2010).
[CrossRef]

Appl. Phys. Lett. (2)

R. K. Ing and J.-P. Monchalin, “Broadband optical detection of ultrasound by two-wave mixing in a photorefractive crystal,” Appl. Phys. Lett. 59, 3233–3235 (1991).
[CrossRef]

C. C. Wang, R. A. Linke, D. D. Nolte, M. R. Melloch, and S. Trivedi, “Enhanced detection bandwidth for optical Doppler frequency measurements using moving space charge field effects in GaAs multiple quantum wells,” Appl. Phys. Lett. 70, 2034–2036 (1997).
[CrossRef]

Ferroelectrics (1)

G. Pauliat and G. Roosen, “Theoretical and experimental study of diffraction in optically active and linearly birefringent sillenite crystals,” Ferroelectrics 75, 281–294 (1987).
[CrossRef]

J. Appl. Phys. (6)

N. A. Korneev and S. I. Stepanov, “Non-steady-state photoelectromotive force in semiconductor crystals with high light absorption,” J. Appl. Phys. 74, 2736–2741 (1993).
[CrossRef]

N. Korneev, S. Mansurova, and S. Stepanov, “Nonstationary current in bipolar photoconductor with slow photoconductivity relaxation,” J. Appl. Phys. 78, 2925–2931 (1995).
[CrossRef]

A. A. Kamshilin, R. V. Romashko, and Y. N. Kulchin, “Adaptive interferometry with photorefractive crystals,” J. Appl. Phys. 105, 031101 (2009).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, and G. S. Trofimov, “Non-steady-state photo-electro-motive force induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

H. Veenhuis, K. Buse, E. Krätzig, N. Korneev, and D. Mayorga, “Non-steady-state photoelectromotive force in reduced lithium niobate crystals,” J. Appl. Phys. 86, 2389–2392 (1999).
[CrossRef]

P. Refregier, L. Solymar, H. Rajbenbach, and J. P. Huignard, “Two-beam coupling in photorefractive Bi12SiO20 crystals with moving grating: theory and experiments,” J. Appl. Phys. 58, 45–57 (1985).
[CrossRef]

J. Mod. Opt. (1)

S. Bian and J. Frejlich, “Phase modulated two-wave mixing in crystals with long photocarrier lifetimes,” J. Mod. Opt. 43, 1185–1198 (1996).
[CrossRef]

J. Opt. A (1)

P. Delaye, S. de Rossi, and G. Roosen, “Photorefractive vibrometer for the detection of high-amplitude vibrations on rough surfaces,” J. Opt. A 2, 209–215 (2000).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

J. P. Huignard and A. Marrakchi, “Coherent signal beam amplification in two-wave mixing experiments with photorefractive Bi12SiO20 crystals,” Opt. Commun. 38, 249–254 (1981).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Photon. News (1)

D. M. Pepper, G. J. Dunning, D. D. Nolte, J. A. Coy, B. Pouet, G. D. Bacher, and M. B. Klein, “Improved responsivity of non-steady-state photoinduced electromotive force sensors using asymmetric interdigitated contacts for laser-based ultrasound detection,” Opt. Photon. News 10(12), 11–12 (1999).
[CrossRef]

Phys. Rev. B (2)

U. Haken, M. Hundhausen, and L. Ley, “Analysis of the moving-photocarrier-grating technique for the determination of mobility and lifetime of photocarriers in semiconductors,” Phys. Rev. B 51, 10579–10590 (1995).
[CrossRef]

M. C. Gather, S. Mansurova, and K. Meerholz, “Determining the photoelectric parameters of an organic photoconductor by the photoelectromotive-force technique,” Phys. Rev. B 75, 165203 (2007).
[CrossRef]

Quantum Electron. (2)

A. A. Kolegov, S. M. Shandarov, G. V. Simonova, L. A. Kabanova, N. I. Burimov, S. S. Shmakov, V. I. Bykov, and Y. F. Kargin, “Adaptive interferometry based on dynamic reflective holograms in cubic photorefractive crystals,” Quantum Electron. 41, 847–852 (2011).
[CrossRef]

A. M. Plesovskikh, S. M. Shandarov, A. G. Mart’yanov, A. E. Mandel, N. I. Burimov, E. A. Shaganova, Y. F. Kargin, V. V. Volkov, and A. V. Egorysheva, “Vector two-wavelength interaction on reflection holographic gratings in cubic gyrotropic photorefractive crystals,” Quantum Electron. 35, 163–168 (2005).
[CrossRef]

Sov. Phys. Solid State (2)

S. I. Stepanov and G. S. Trofimov, “Transient EMF in crystals having ambipolar photoconductivity,” Sov. Phys. Solid State 31, 49–50 (1989).

G. S. Trofimov and S. I. Stepanov, “Time-dependent holographic currents in photorefractive crystals,” Sov. Phys. Solid State 28, 1559–1562 (1986).

Sov. Tech. Phys. Lett. (1)

G. S. Trofimov, S. I. Stepanov, M. P. Petrov, and M. V. Krasin’kova, “Time-varying photo-EMF associated with spatially nonuniform surface excitation of GaAs:Cr,” Sov. Tech. Phys. Lett. 13, 108–109 (1987).

Other (5)

P. Günter and J.-P. Huignard, Photorefractive Materials and their Applications II, Vol. 62 of Topics in Applied Physics (Springer, 1989).

M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Vol. 59 of Springer Series in Optical Sciences (Springer, 1991).

R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic, 1971).

R. Jones and C. Wykes, Holographic and Speckle Interferometry (Cambridge University, 1989).

I. A. Sokolov, P. Hess, M. A. Bryushinin, V. V. Kulikov, S. H. Khan, and K. T. V. Grattan, Interferometry in Speckle Light: Theory and Applications, P. Jacquot and J.-M. Fournier, eds. (Springer, 2000), pp. 187–194.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Scheme of the space-charge formation and excitation of the non-steady-state photo-EMF and two-wave mixing signals by frequency modulated light.

Fig. 2.
Fig. 2.

Time dependencies of the real and imaginary parts of integral Ξ (normalized two-wave mixing and photo-EMF signals) calculated for different sweep rates Aτsc2=0.01, 0.1, and 1.

Fig. 3.
Fig. 3.

Experimental setup used for measurements of the non-steady-state photo-EMF and two-wave mixing signals excited by frequency modulated light. AOM represents the acousto-optic modulators. The sample (GaAs or Bi12TiO20) is placed in the intersection of light beams in the corresponding experiment.

Fig. 4.
Fig. 4.

Oscillograms of the frequency shift in signal beam and the corresponding current arising in GaAs crystal. λ=633nm, I0=240mW/cm2, K=190mm1, and A=108Hz/s.

Fig. 5.
Fig. 5.

Oscillograms of the photocurrent in GaAs crystal measured for different sweep rates A=106, 107, 108, and 109Hz/s. λ=633nm, I0=240mW/cm2, and K=190mm1. Thin blue lines show approximation by Eq. (21) for τsc=12μs.

Fig. 6.
Fig. 6.

Dependence of the photo-EMF peak-to-peak amplitude versus average light intensity. GaAs, λ=633nm, K=190mm1, and A=5×107Hz/s. Solid line shows approximation JppI00.56.

Fig. 7.
Fig. 7.

Oscillograms of the two-wave mixing ac signal measured in Bi12TiO20 crystal at different sweep rates: A=0.5, 5, and 50kHz/s. λ=633nm, I0=240mW/cm2, and K=2.3μm1.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

ER(r,t)=(ER/2)exp[ikRriψR(t)]+c.c.,
ES(r,t)=(ES/2)exp[ikSriψS(t)]+c.c.
ψR=2π(fL+f0)t,
ψS=2π(fL+f0)t+2π0tΔf(t)dt,
Δf(t)=At.
I(x,t)=I0{1+mcos[Kx+φ(t)]},
φ(t)=2π0tΔf(t)dt=πAt2,
I(x,t)=I0[1+m(t)2eiKx+m*(t)2eiKx],
m(t)=mexp[iφ(t)].
n(x,t)=n0[1+a(t)2eiKx+a*(t)2eiKx],
Esc(x,t)=Esc(t)2eiKx+Esc*(t)2eiKx.
dadt=1+K2LD2τa+iKμEsc+m(t)τ,
dEscdt=iEDτMa1τMEsc.
a(t)=m(t)+iμτKEsc(t)1+K2LD2,
Esc(t)=iEDτsc0m(tt)et/τscdt.
j(t)=σ0Re[a(t)Esc*(t)]/2,
j(t)=m2σ0ED2(1+K2LD2)ImΞ(t),
Ξ(t)=τsc10exp{i[φ(t)φ(tt)]t/τsc}dt.
PS(t)=PS+PRδ2d2|Esc(t)|2/4+PRPSδdIm[eiφ(t)Esc*(t)],
PS(t)=P0m2δdED2ReΞ(t),
Ξ(t)=12Aτsc2exp[tτsc+i(π4+14πAτsc2πAt2)]×Erf(πAit+i4πAτsc2).
Ξ(t)=(1+i2πAtτsc)1=(1+i2πΔf(t)τsc)1.
Ξ(t)=(1+i2πAtτsc)1+(Aτsc2)1/2×exp[t/τsc+i(π/4πAt2)].
U(t)=Re{U0RC0exp[iφ(tt)t/RC]dt},

Metrics