Abstract

We present three operation regimes with an L-band erbium-doped fiber laser passively mode-locked by a graphene oxide saturable absorber (GOSA) that is fabricated by using a wet chemical method. One is a stable state of single soliton emission with pulse duration of 426 fs, which is the shortest pulse duration ever achieved with an L-band design by employing GOSA as the mode-locker. The other two operation regimes include bound-state soliton and dual-wavelength nanosecond pulse generation, which are demonstrated for the first time by using the GOSA mode-locker. Our results further indicate the practical potential of GOSA in ultrafast fiber lasers for achieving various mode-locking regimes.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A 2.95 GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film

Peiguang Yan, Rongyong Lin, Shuangchen Ruan, Aijiang Liu, and Hao Chen
Opt. Express 23(1) 154-164 (2015)

Graphene-based passively mode-locked bidirectional fiber ring laser

Venkatesh Mamidala, R. I. Woodward, Y. Yang, H. H. Liu, and K. K. Chow
Opt. Express 22(4) 4539-4546 (2014)

Dark solitons in WS2 erbium-doped fiber lasers

Wenjun Liu, Lihui Pang, Hainian Han, Zhongwei Shen, Ming Lei, Hao Teng, and Zhiyi Wei
Photon. Res. 4(3) 111-114 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription