Abstract

The entanglement behavior for different classes of two-qubit systems passing through a generalized amplitude damping channel is discussed. The phenomena of sudden single and double changes and the sudden death of entanglement are reported for identical and nonidentical noise. It is shown that, for less entangled states, these phenomena appear for small values of channel strength. The effect of the channel can be frozen for these classes as one increases the channel strength. Maximum entangled states are more fragile than partial entangled states, where the entanglement decays very fast. However, one cannot freeze the effect of the noise channel for systems initially prepared in maximum entangled states. The decay rate of entanglement for systems affected by nonidentical noise is much larger than that affected by identical noise.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (6)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription