Abstract

The entanglement behavior for different classes of two-qubit systems passing through a generalized amplitude damping channel is discussed. The phenomena of sudden single and double changes and the sudden death of entanglement are reported for identical and nonidentical noise. It is shown that, for less entangled states, these phenomena appear for small values of channel strength. The effect of the channel can be frozen for these classes as one increases the channel strength. Maximum entangled states are more fragile than partial entangled states, where the entanglement decays very fast. However, one cannot freeze the effect of the noise channel for systems initially prepared in maximum entangled states. The decay rate of entanglement for systems affected by nonidentical noise is much larger than that affected by identical noise.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  2. S. Bandyopadhyag, “Origin of noisy states whose teleportation fidelity can be enhanced through dissipation,” Phys. Rev. A 65, 022302 (2002).
    [CrossRef]
  3. T. Yu and J. H. Eberly, “Sudden death of entanglement: classical noise effects,” Opt. Commun. 264, 393–397 (2006).
    [CrossRef]
  4. T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett. 97, 140403 (2006).
    [CrossRef]
  5. X.-F. Qian and J. H. Eberly, “Initial conditions and entanglement sudden death,” Phys. Lett. A 376, 2931–2934 (2012).
    [CrossRef]
  6. N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
    [CrossRef]
  7. P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000).
    [CrossRef]
  8. Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010).
    [CrossRef]
  9. Z.-X. Man, Y.-J. Xie, and N. B. An, “Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements,” Phys. Rev. A 86, 052322 (2012).
    [CrossRef]
  10. H. Eleuch and N. Rachid, “Autocorrelation function of microcavity-emitting field in the non-linear regime,” Eur. Phys. J. D 57, 259–264 (2010).
    [CrossRef]
  11. H. Jabri, H. Eleuch, and T. Djerad, “Lifetimes of atomic Rydberg states by autocorrelation function,” Laser Phys. Lett. 2, 253–257 (2005).
    [CrossRef]
  12. H. Eleuch, N. B. Nessib, and R. Bennaceur, “Quantum model of emission in weakly non ideal plasma,” Eur. Phys. J. D 29, 391–395 (2004).
    [CrossRef]
  13. K. Berrada, H. Eleuch, and Y. Hassouni, “Asymtotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
    [CrossRef]
  14. R. Srikanth and S. Banerjee, “Squeezed generalized amplitude damping channel,” Phys. Rev. A 77, 012318 (2008).
    [CrossRef]
  15. F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, “Geometric quantum discord through the Schatten 1-norm,” Phys. Rev. A 87, 064101 (2013).
    [CrossRef]
  16. J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013).
    [CrossRef]
  17. B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
    [CrossRef]
  18. B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys. B 72, 35–42 (2001).
    [CrossRef]
  19. T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence,” Quantum Inf. Comput. 7, 459–468 (2007).
  20. R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
    [CrossRef]
  21. S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
    [CrossRef]
  22. K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
    [CrossRef]
  23. A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996).
    [CrossRef]
  24. I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
    [CrossRef]

2013 (3)

F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, “Geometric quantum discord through the Schatten 1-norm,” Phys. Rev. A 87, 064101 (2013).
[CrossRef]

J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013).
[CrossRef]

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

2012 (2)

X.-F. Qian and J. H. Eberly, “Initial conditions and entanglement sudden death,” Phys. Lett. A 376, 2931–2934 (2012).
[CrossRef]

Z.-X. Man, Y.-J. Xie, and N. B. An, “Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements,” Phys. Rev. A 86, 052322 (2012).
[CrossRef]

2011 (1)

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymtotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[CrossRef]

2010 (3)

Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010).
[CrossRef]

H. Eleuch and N. Rachid, “Autocorrelation function of microcavity-emitting field in the non-linear regime,” Eur. Phys. J. D 57, 259–264 (2010).
[CrossRef]

N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
[CrossRef]

2008 (1)

R. Srikanth and S. Banerjee, “Squeezed generalized amplitude damping channel,” Phys. Rev. A 77, 012318 (2008).
[CrossRef]

2007 (1)

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence,” Quantum Inf. Comput. 7, 459–468 (2007).

2006 (2)

T. Yu and J. H. Eberly, “Sudden death of entanglement: classical noise effects,” Opt. Commun. 264, 393–397 (2006).
[CrossRef]

T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett. 97, 140403 (2006).
[CrossRef]

2005 (1)

H. Jabri, H. Eleuch, and T. Djerad, “Lifetimes of atomic Rydberg states by autocorrelation function,” Laser Phys. Lett. 2, 253–257 (2005).
[CrossRef]

2004 (1)

H. Eleuch, N. B. Nessib, and R. Bennaceur, “Quantum model of emission in weakly non ideal plasma,” Eur. Phys. J. D 29, 391–395 (2004).
[CrossRef]

2002 (1)

S. Bandyopadhyag, “Origin of noisy states whose teleportation fidelity can be enhanced through dissipation,” Phys. Rev. A 65, 022302 (2002).
[CrossRef]

2001 (1)

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys. B 72, 35–42 (2001).
[CrossRef]

2000 (2)

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000).
[CrossRef]

1998 (1)

K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
[CrossRef]

1997 (1)

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

1996 (1)

A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996).
[CrossRef]

1989 (1)

R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[CrossRef]

Adesso, G.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Al-Amri, M.

Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010).
[CrossRef]

An, N. B.

Z.-X. Man, Y.-J. Xie, and N. B. An, “Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements,” Phys. Rev. A 86, 052322 (2012).
[CrossRef]

Auccaise, R.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Badziag, P.

P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000).
[CrossRef]

Bandyopadhyag, S.

S. Bandyopadhyag, “Origin of noisy states whose teleportation fidelity can be enhanced through dissipation,” Phys. Rev. A 65, 022302 (2002).
[CrossRef]

Banerjee, S.

R. Srikanth and S. Banerjee, “Squeezed generalized amplitude damping channel,” Phys. Rev. A 77, 012318 (2008).
[CrossRef]

Bennaceur, R.

H. Eleuch, N. B. Nessib, and R. Bennaceur, “Quantum model of emission in weakly non ideal plasma,” Eur. Phys. J. D 29, 391–395 (2004).
[CrossRef]

Berrada, K.

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymtotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[CrossRef]

Bonagamba, T. J.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Davidocich, L.

Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010).
[CrossRef]

de Azevedo, E. R.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

de Oliveira, T. R.

F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, “Geometric quantum discord through the Schatten 1-norm,” Phys. Rev. A 87, 064101 (2013).
[CrossRef]

Djerad, T.

H. Jabri, H. Eleuch, and T. Djerad, “Lifetimes of atomic Rydberg states by autocorrelation function,” Laser Phys. Lett. 2, 253–257 (2005).
[CrossRef]

Eberly, J. H.

X.-F. Qian and J. H. Eberly, “Initial conditions and entanglement sudden death,” Phys. Lett. A 376, 2931–2934 (2012).
[CrossRef]

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence,” Quantum Inf. Comput. 7, 459–468 (2007).

T. Yu and J. H. Eberly, “Sudden death of entanglement: classical noise effects,” Opt. Commun. 264, 393–397 (2006).
[CrossRef]

T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett. 97, 140403 (2006).
[CrossRef]

Eleuch, H.

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymtotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[CrossRef]

H. Eleuch and N. Rachid, “Autocorrelation function of microcavity-emitting field in the non-linear regime,” Eur. Phys. J. D 57, 259–264 (2010).
[CrossRef]

H. Jabri, H. Eleuch, and T. Djerad, “Lifetimes of atomic Rydberg states by autocorrelation function,” Laser Phys. Lett. 2, 253–257 (2005).
[CrossRef]

H. Eleuch, N. B. Nessib, and R. Bennaceur, “Quantum model of emission in weakly non ideal plasma,” Eur. Phys. J. D 29, 391–395 (2004).
[CrossRef]

Englert, B.-G.

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys. B 72, 35–42 (2001).
[CrossRef]

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

Girolami, D.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Hassouni, Y.

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymtotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[CrossRef]

Hill, S.

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

Horodecki, M.

P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000).
[CrossRef]

Horodecki, P.

P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000).
[CrossRef]

K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
[CrossRef]

Horodecki, R.

P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000).
[CrossRef]

Jabri, H.

H. Jabri, H. Eleuch, and T. Djerad, “Lifetimes of atomic Rydberg states by autocorrelation function,” Laser Phys. Lett. 2, 253–257 (2005).
[CrossRef]

Lewenstein, M.

K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
[CrossRef]

Man, Z.-X.

Z.-X. Man, Y.-J. Xie, and N. B. An, “Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements,” Phys. Rev. A 86, 052322 (2012).
[CrossRef]

Metwally, N.

N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
[CrossRef]

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys. B 72, 35–42 (2001).
[CrossRef]

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

Montealegre, J. D.

J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013).
[CrossRef]

Nessib, N. B.

H. Eleuch, N. B. Nessib, and R. Bennaceur, “Quantum model of emission in weakly non ideal plasma,” Eur. Phys. J. D 29, 391–395 (2004).
[CrossRef]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Oliveira, I. S.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Paula, F. M.

J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013).
[CrossRef]

F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, “Geometric quantum discord through the Schatten 1-norm,” Phys. Rev. A 87, 064101 (2013).
[CrossRef]

Peres, A.

A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996).
[CrossRef]

Qian, X.-F.

X.-F. Qian and J. H. Eberly, “Initial conditions and entanglement sudden death,” Phys. Lett. A 376, 2931–2934 (2012).
[CrossRef]

Rachid, N.

H. Eleuch and N. Rachid, “Autocorrelation function of microcavity-emitting field in the non-linear regime,” Eur. Phys. J. D 57, 259–264 (2010).
[CrossRef]

Saguia, A.

J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013).
[CrossRef]

Sanpera, A.

K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
[CrossRef]

Sarandy, M. S.

J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013).
[CrossRef]

F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, “Geometric quantum discord through the Schatten 1-norm,” Phys. Rev. A 87, 064101 (2013).
[CrossRef]

Sarthour, R. S.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Silva, I. A.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Soares-Pinto, D. O.

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

Srikanth, R.

R. Srikanth and S. Banerjee, “Squeezed generalized amplitude damping channel,” Phys. Rev. A 77, 012318 (2008).
[CrossRef]

Sun, Q.

Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010).
[CrossRef]

Werner, R. F.

R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[CrossRef]

Wootters, W. K.

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

Xie, Y.-J.

Z.-X. Man, Y.-J. Xie, and N. B. An, “Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements,” Phys. Rev. A 86, 052322 (2012).
[CrossRef]

Yu, T.

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence,” Quantum Inf. Comput. 7, 459–468 (2007).

T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett. 97, 140403 (2006).
[CrossRef]

T. Yu and J. H. Eberly, “Sudden death of entanglement: classical noise effects,” Opt. Commun. 264, 393–397 (2006).
[CrossRef]

Zubairy, M. S.

Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010).
[CrossRef]

Zyczkowski, K.

K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
[CrossRef]

Appl. Phys. B (1)

B.-G. Englert and N. Metwally, “Remarks on 2-qubit states,” Appl. Phys. B 72, 35–42 (2001).
[CrossRef]

Eur. Phys. J. D (2)

H. Eleuch, N. B. Nessib, and R. Bennaceur, “Quantum model of emission in weakly non ideal plasma,” Eur. Phys. J. D 29, 391–395 (2004).
[CrossRef]

H. Eleuch and N. Rachid, “Autocorrelation function of microcavity-emitting field in the non-linear regime,” Eur. Phys. J. D 57, 259–264 (2010).
[CrossRef]

Int. J. Theor. Phys. (1)

N. Metwally, “Information loss in local dissipation environments,” Int. J. Theor. Phys. 49, 1571–1579 (2010).
[CrossRef]

J. Mod. Opt. (1)

B.-G. Englert and N. Metwally, “Separability of entangled q-bit pairs,” J. Mod. Opt. 47, 2221–2231 (2000).
[CrossRef]

J. Phys. B (1)

K. Berrada, H. Eleuch, and Y. Hassouni, “Asymtotic dynamics of quantum discord in open quantum systems,” J. Phys. B 44, 145503 (2011).
[CrossRef]

Laser Phys. Lett. (1)

H. Jabri, H. Eleuch, and T. Djerad, “Lifetimes of atomic Rydberg states by autocorrelation function,” Laser Phys. Lett. 2, 253–257 (2005).
[CrossRef]

Opt. Commun. (1)

T. Yu and J. H. Eberly, “Sudden death of entanglement: classical noise effects,” Opt. Commun. 264, 393–397 (2006).
[CrossRef]

Phys. Lett. A (1)

X.-F. Qian and J. H. Eberly, “Initial conditions and entanglement sudden death,” Phys. Lett. A 376, 2931–2934 (2012).
[CrossRef]

Phys. Rev. A (9)

R. Srikanth and S. Banerjee, “Squeezed generalized amplitude damping channel,” Phys. Rev. A 77, 012318 (2008).
[CrossRef]

F. M. Paula, T. R. de Oliveira, and M. S. Sarandy, “Geometric quantum discord through the Schatten 1-norm,” Phys. Rev. A 87, 064101 (2013).
[CrossRef]

J. D. Montealegre, F. M. Paula, A. Saguia, and M. S. Sarandy, “One-norm geometric quantum discord under decoherence,” Phys. Rev. A 87, 042115 (2013).
[CrossRef]

S. Bandyopadhyag, “Origin of noisy states whose teleportation fidelity can be enhanced through dissipation,” Phys. Rev. A 65, 022302 (2002).
[CrossRef]

P. Badziag, M. Horodecki, P. Horodecki, and R. Horodecki, “Local environment can enhance fidelity of quantum teleportation,” Phys. Rev. A 62, 012311 (2000).
[CrossRef]

Q. Sun, M. Al-Amri, L. Davidocich, and M. S. Zubairy, “Reversing entanglement change by a weak measurement,” Phys. Rev. A 82, 052323 (2010).
[CrossRef]

Z.-X. Man, Y.-J. Xie, and N. B. An, “Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements,” Phys. Rev. A 86, 052322 (2012).
[CrossRef]

R. F. Werner, “Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model,” Phys. Rev. A 40, 4277–4281 (1989).
[CrossRef]

K. Zyczkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, “Volume of the set of separable states,” Phys. Rev. A 58, 883–892 (1998).
[CrossRef]

Phys. Rev. Lett. (4)

A. Peres, “Separability criterion for density matrices,” Phys. Rev. Lett. 77, 1413–1415 (1996).
[CrossRef]

I. A. Silva, D. Girolami, R. Auccaise, R. S. Sarthour, I. S. Oliveira, T. J. Bonagamba, E. R. de Azevedo, D. O. Soares-Pinto, and G. Adesso, “Measuring bipartite quantum correlations of an unknown state,” Phys. Rev. Lett. 110, 140501 (2013).
[CrossRef]

S. Hill and W. K. Wootters, “Entanglement of a pair of quantum bits,” Phys. Rev. Lett. 78, 5022–5025 (1997).
[CrossRef]

T. Yu and J. H. Eberly, “Quantum open system theory: bipartite aspects,” Phys. Rev. Lett. 97, 140403 (2006).
[CrossRef]

Quantum Inf. Comput. (1)

T. Yu and J. H. Eberly, “Evolution from entanglement to decoherence,” Quantum Inf. Comput. 7, 459–468 (2007).

Other (1)

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Negativity N(in) as a measure of entanglement for different classes of initial states with cxx=1 and cyy, czz[1,0], and p=γ=0.

Fig. 2.
Fig. 2.

(a) Negativity N(fid) against the channel parameters p and γ for a state initially prepared in the X—state with cxx=0.1, cyy=0.2, and czz=0.7. (b) Same as (a) but for particular values of p. The solid, dotted, and dashed curves are for p=0.1,0.2, and 0.3, respectively.

Fig. 3.
Fig. 3.

(a) Negativity N(fid) for class initially prepared in Werener state with cxx=cyy=czz=0.03. The solid, dotted, and dashed curves are for p=0.01,0.1,0.2, respectively. (b) Same as (a) but p=0.7,0.8,0.9 for the solid, dotted, and dashed curves, respectively.

Fig. 4.
Fig. 4.

Same as Fig. 3, but the system is initially prepared in (a) maximum entangled state, i.e., cxx=cyy=czz=1, and (b) X—state with cxx=0.1, cyy=0.2, and czz=0.3.

Fig. 5.
Fig. 5.

Same as Fig. 2, but it is assumed that the noise is nonidentical.

Fig. 6.
Fig. 6.

Negativity N(fnd) for a system initially prepared in a Werner state defined by cxx=cyy=czz=0.3 passes through nonidentical noise. (a) Solid, dotted, and dashed curves for p=0.01,0.1,0.2, respectively. (b) Solid, dotted, and dashed curves for p=0.7,0.8,0.9, respectively.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ρab=14(1+s⃗·σ⃗(a)+t⃗·σ(b)+σ⃗(a)·C⃗·σ(b)).
ρab(in)=14(1+σ⃗(a)·C⃗·σ(b)).
N(in)=μ=14|λμ|1,
N(in)=12+12tr{C⃗T·C⃗}.
ρab(f)=i=03{Ua(i)Ub(i)ρab(in)Ub(i)Ua(i)},
Uj(0)=p(|00|+1γ|11|),Uj(1)=p|01|,Uj(2)=1p(1γ|00|+|11|),Uj(3)=1pγ|10|,
ρab(fid)=Ua(0)Ub(0)ρab(in)Ub(0)Ua(0)+Ua(1)Ub(1)ρab(in)Ub(1)Ua(1)+Ua(2)Ub(2)ρab(in)Ub(2)Ua(2)+Ua(3)Ub(3)ρab(in)Ub(3)Ua(3),
ρab(fid)=14(1+c11σx(a)σx(b)+c22σy(a)σy(b)+c33σz(a)σz(b2)),
c11=B2+B3+B7+B8,c22=c11,c33=(B1+B6)(B4+B5),
B1=1+czz4[p2+(1p)2(1γ)2],B2=cxxcyy4[(1γ)(1p)2+p2(2γ)],B3=cxxcyy4(1γ)[p2+(1p)2]+γ(1p),B4=1czz4(1γ)[p2+(1p)2],B5=B4,B6=1+czz4[p2(1γ)2+(1p)2],B7=B8=czz+cyy4[p2(1γ)2+(1γ)(1p)2].
ρab(fnd)=i=0i=3j=0j=3{Ua(i)Ub(j)ρab(in)Ub(j)Ua(i)}.
B˜1=1+czz4(p+(1p)(1γ))2,B˜2=1czz4[(1γ)(p2+(1p)2)+p(1p)(1+(1γ)2)],B˜3=B˜2,B˜4=1+czz4(p2(1γ)2+(1p)2+p(1p)(1γ))+cxxcyy4γ2(1p)2,B˜5=cxxcyy41γ(γ+p(1γ)+cxx+cyy4(1γ)[(2p1)+p(1p)(2+γ)],B˜6=cxxcyy41γ(p2+γ(1p)2+p(1p)(1+γ)),+cxx+cyy4[(1γ)+γp(1p)],B˜7=cxxcyy4(1γ)(1+p2)+cxx+cyy2p1γ,B˜8=cxxcyy4(1γ)(p2+p1)+cxx+cyy2γ1γ(1p).

Metrics