Abstract

We propose two schemes for generating the Knill–Lafamme–Milburn states of two distant polar molecule ensembles, respectively, in two transmission-line resonators (TLRs) connected by a superconducting charge qutrit (SCQ), and of two SCQs in a TLR, respectively. Both schemes are robust against photon decay due to the virtual excitations of the microwave photons of the TLRs, and the spontaneous emission can be suppressed owing to the virtual transitions of the SCQs in the second scheme. In addition, the schemes have high controllability and feasibility under the current available techniques.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef]
  2. C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
    [CrossRef]
  3. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
    [CrossRef]
  4. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
    [CrossRef]
  5. K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
    [CrossRef]
  6. M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
    [CrossRef]
  7. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
    [CrossRef]
  8. G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
    [CrossRef]
  9. E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
    [CrossRef]
  10. S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
    [CrossRef]
  11. G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
    [CrossRef]
  12. P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
    [CrossRef]
  13. D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
    [CrossRef]
  14. J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
    [CrossRef]
  15. X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down conversions,” Phys. Rev. A 73, 054301 (2006).
    [CrossRef]
  16. C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
    [CrossRef]
  17. D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009).
    [CrossRef]
  18. X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
    [CrossRef]
  19. H. Y. Yu, Y. Luo, and W. Yao, “Generating coherent states of entangled spins,” Phys. Rev. A 84, 032337 (2011).
    [CrossRef]
  20. X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013).
    [CrossRef]
  21. E. Knill, R. Lafamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [CrossRef]
  22. J. Modławska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
    [CrossRef]
  23. J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
    [CrossRef]
  24. K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
    [CrossRef]
  25. K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
    [CrossRef]
  26. K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
    [CrossRef]
  27. L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Generation of two-atom Knill-Laflamme-Milburn states with cavity quantum electrodynamics,” J. Opt. Soc. Am. B 29, 1584–1588 (2012).
    [CrossRef]
  28. S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
    [CrossRef]
  29. Q. Chen, W. L. Yang, and M. Feng, “Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit,” Phys. Rev. A 86, 045801 (2012).
    [CrossRef]
  30. P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
    [CrossRef]
  31. A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
    [CrossRef]
  32. C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
    [CrossRef]
  33. C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013).
    [CrossRef]
  34. L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
    [CrossRef]
  35. S. D. Huber and H. P. Büchler, “Dipole-interaction-mediated laser cooling of polar molecules to ultracold temperatures,” Phys. Rev. Lett. 108, 193006 (2012).
    [CrossRef]
  36. B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012).
    [CrossRef]
  37. M. F. Chen, C. L. Zhang, and S. S. Ma, “Generation of W state and NOON state of distant polar molecules ensembles via a triple hybrid device,” Opt. Commun. 306, 21–25 (2013).
    [CrossRef]
  38. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
    [CrossRef]
  39. M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
    [CrossRef]
  40. J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58(11), 42–47 (2005).
    [CrossRef]
  41. G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
    [CrossRef]
  42. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
    [CrossRef]
  43. O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006).
    [CrossRef]
  44. X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003).
    [CrossRef]
  45. L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
    [CrossRef]
  46. A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
    [CrossRef]

2013 (3)

X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013).
[CrossRef]

C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013).
[CrossRef]

M. F. Chen, C. L. Zhang, and S. S. Ma, “Generation of W state and NOON state of distant polar molecules ensembles via a triple hybrid device,” Opt. Commun. 306, 21–25 (2013).
[CrossRef]

2012 (4)

S. D. Huber and H. P. Büchler, “Dipole-interaction-mediated laser cooling of polar molecules to ultracold temperatures,” Phys. Rev. Lett. 108, 193006 (2012).
[CrossRef]

B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012).
[CrossRef]

Q. Chen, W. L. Yang, and M. Feng, “Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit,” Phys. Rev. A 86, 045801 (2012).
[CrossRef]

L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Generation of two-atom Knill-Laflamme-Milburn states with cavity quantum electrodynamics,” J. Opt. Soc. Am. B 29, 1584–1588 (2012).
[CrossRef]

2011 (2)

K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[CrossRef]

H. Y. Yu, Y. Luo, and W. Yao, “Generating coherent states of entangled spins,” Phys. Rev. A 84, 032337 (2011).
[CrossRef]

2010 (5)

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
[CrossRef]

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[CrossRef]

2009 (3)

L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009).
[CrossRef]

J. Modławska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

2008 (3)

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[CrossRef]

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

2007 (2)

S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

2006 (4)

X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down conversions,” Phys. Rev. A 73, 054301 (2006).
[CrossRef]

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006).
[CrossRef]

2005 (3)

J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58(11), 42–47 (2005).
[CrossRef]

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

2004 (2)

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[CrossRef]

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

2003 (3)

G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef]

X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003).
[CrossRef]

2002 (2)

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

2001 (2)

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
[CrossRef]

E. Knill, R. Lafamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

2000 (1)

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

1999 (1)

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

1997 (1)

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

1996 (1)

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

1992 (2)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

André, A.

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

Ansmann, M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Auffeves, A.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

Awschalom, D. D.

O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Bertet, P.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

Berthiaume, A.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Bessette, F.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Bialczak, R. C.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Blais, A.

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[CrossRef]

Blakestad, R. B.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Britton, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Brune, M.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Büchler, H. P.

S. D. Huber and H. P. Büchler, “Dipole-interaction-mediated laser cooling of polar molecules to ultracold temperatures,” Phys. Rev. Lett. 108, 193006 (2012).
[CrossRef]

Bužek, V.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Carr, L. D.

L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Cernoch, A.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

Chen, J.

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Chen, L.

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
[CrossRef]

Chen, M. F.

M. F. Chen, C. L. Zhang, and S. S. Ma, “Generation of W state and NOON state of distant polar molecules ensembles via a triple hybrid device,” Opt. Commun. 306, 21–25 (2013).
[CrossRef]

Chen, Q.

Q. Chen, W. L. Yang, and M. Feng, “Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit,” Phys. Rev. A 86, 045801 (2012).
[CrossRef]

Chen, X. Y.

X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013).
[CrossRef]

Cheng, L. Y.

Chiaverini, J.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Cho, J.

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Chou, C. W.

D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009).
[CrossRef]

Chow, J. M.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

Clarke, J.

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[CrossRef]

Cleland, A. N.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Demille, D.

L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

Devoret, M. H.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

DiCarlo, L.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

Donegan, M. M.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

Doyle, J. M.

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

Feng, M.

Q. Chen, W. L. Yang, and M. Feng, “Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit,” Phys. Rev. A 86, 045801 (2012).
[CrossRef]

Fiurášek, J.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

Franson, J. D.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

Frunzio, L.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

Gambetta, J. M.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

Gao, W. B.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Girvin, S. M.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[CrossRef]

Glaetzle, A. W.

B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012).
[CrossRef]

Goebel, A.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Grudka, A.

J. Modławska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

Gühne, O.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Guo, G. C.

X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down conversions,” Phys. Rev. A 73, 054301 (2006).
[CrossRef]

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Gywat, O.

O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006).
[CrossRef]

Hagley, E.

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Han, S.

C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013).
[CrossRef]

Han, S. Y.

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Haroche, S.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Hillery, M.

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Hofheinz, M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Huang, R. S.

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[CrossRef]

Huber, S. D.

S. D. Huber and H. P. Büchler, “Dipole-interaction-mediated laser cooling of polar molecules to ultracold temperatures,” Phys. Rev. Lett. 108, 193006 (2012).
[CrossRef]

Hume, D. B.

D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009).
[CrossRef]

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Itano, W. M.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Jacobs, B. C.

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

Jiang, L. Z.

X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013).
[CrossRef]

Johnson, B. R.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

Jost, J. D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Katz, N.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef]

Knill, E.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

E. Knill, R. Lafamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Krems, R. V.

L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Kwiat, P. G.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

Lafamme, R.

E. Knill, R. Lafamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Langer, C.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Lee, H. W.

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

Leibfried, D.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Lemr, K.

K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[CrossRef]

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

Loss, D.

O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006).
[CrossRef]

Lu, C. Y.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Lucero, E.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Lukin, M. D.

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

Luo, Y.

H. Y. Yu, Y. Luo, and W. Yao, “Generating coherent states of entangled spins,” Phys. Rev. A 84, 032337 (2011).
[CrossRef]

Ma, S. S.

M. F. Chen, C. L. Zhang, and S. S. Ma, “Generation of W state and NOON state of distant polar molecules ensembles via a triple hybrid device,” Opt. Commun. 306, 21–25 (2013).
[CrossRef]

Maioli, P.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

Maître, X.

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Mao, B.

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Martinis, J. M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Mattle, K.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

Maxwell, S. E.

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

Meier, F.

O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006).
[CrossRef]

Milburn, G. J.

E. Knill, R. Lafamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

Milman, P.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

Modlawska, J.

J. Modławska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

Neeley, M.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Nogues, G.

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Nori, F.

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[CrossRef]

J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58(11), 42–47 (2005).
[CrossRef]

O’connell, A.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Osnaghi, S.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

Ozeri, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Pan, J. W.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Popescu, S.

S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[CrossRef]

Pupillo, G.

B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012).
[CrossRef]

Rabl, P.

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

Raimond, J. M.

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Reed, M. D.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

Reichle, R.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Rosenband, T.

D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009).
[CrossRef]

Salvail, L.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Schoelkopf, R. J.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[CrossRef]

Seidelin, S.

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Shao, X. Q.

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
[CrossRef]

Shu, J.

X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down conversions,” Phys. Rev. A 73, 054301 (2006).
[CrossRef]

Smolin, J.

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

Soubusta, J.

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

Su, Q. P.

C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013).
[CrossRef]

Su, X. H.

X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003).
[CrossRef]

Sun, G. Z.

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Sun, L.

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

Tian, M. Z.

X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013).
[CrossRef]

Vidal, G.

G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
[CrossRef]

Wallraff, A.

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[CrossRef]

Wang, H.

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

Wang, H. F.

Weinfurter, H.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

Wen, X. D.

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

Wilhelm, F. K.

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[CrossRef]

Wineland, D. J.

D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009).
[CrossRef]

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

Wu, P. H.

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Wunderlich, C.

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

Yang, C. P.

C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013).
[CrossRef]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[CrossRef]

Yang, T.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Yang, W. L.

Q. Chen, W. L. Yang, and M. Feng, “Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit,” Phys. Rev. A 86, 045801 (2012).
[CrossRef]

Yao, W.

H. Y. Yu, Y. Luo, and W. Yao, “Generating coherent states of entangled spins,” Phys. Rev. A 84, 032337 (2011).
[CrossRef]

Ye, J.

L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Yeon, K. H.

L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Generation of two-atom Knill-Laflamme-Milburn states with cavity quantum electrodynamics,” J. Opt. Soc. Am. B 29, 1584–1588 (2012).
[CrossRef]

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
[CrossRef]

Yi, X. X.

X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003).
[CrossRef]

You, J. Q.

J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58(11), 42–47 (2005).
[CrossRef]

You, L.

X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003).
[CrossRef]

Yu, H. Y.

H. Y. Yu, Y. Luo, and W. Yao, “Generating coherent states of entangled spins,” Phys. Rev. A 84, 032337 (2011).
[CrossRef]

Yu, P.

X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013).
[CrossRef]

Yu, Y.

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Yuan, Z. S.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zeilinger, A.

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

Zhang, C. L.

M. F. Chen, C. L. Zhang, and S. S. Ma, “Generation of W state and NOON state of distant polar molecules ensembles via a triple hybrid device,” Opt. Commun. 306, 21–25 (2013).
[CrossRef]

Zhang, J.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zhang, S.

L. Y. Cheng, H. F. Wang, S. Zhang, and K. H. Yeon, “Generation of two-atom Knill-Laflamme-Milburn states with cavity quantum electrodynamics,” J. Opt. Soc. Am. B 29, 1584–1588 (2012).
[CrossRef]

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
[CrossRef]

Zhang, Y. S.

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

Zhao, B.

B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012).
[CrossRef]

Zhao, Y. F.

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
[CrossRef]

Zheng, S. B.

C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013).
[CrossRef]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[CrossRef]

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

Zhou, X. Q.

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Zoller, P.

B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012).
[CrossRef]

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

Zou, X. B.

X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down conversions,” Phys. Rev. A 73, 054301 (2006).
[CrossRef]

Europhys. Lett. (1)

X. Q. Shao, L. Chen, S. Zhang, Y. F. Zhao, and K. H. Yeon, “Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage,” Europhys. Lett. 90, 1–5 (2010).
[CrossRef]

J. Cryptology (1)

C. H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin, “Experimental quantum cryptography,” J. Cryptology 5, 3–28 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

K. Lemr, “Preparation of Knill-Laflamme-Milburn states using a tunable controlled phase gate,” J. Phys. B 44, 195501 (2011).
[CrossRef]

Nat. Commun. (1)

G. Z. Sun, X. D. Wen, B. Mao, J. Chen, Y. Yu, P. H. Wu, and S. Y. Han, “Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system,” Nat. Commun. 1, 1–7 (2010).
[CrossRef]

Nat. Phys. (3)

M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’connell, H. Wang, A. N. Cleland, and J. M. Martinis, “Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state,” Nat. Phys. 4, 523–526 (2008).
[CrossRef]

A. André, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller, “A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators,” Nat. Phys. 2, 636–642 (2006).
[CrossRef]

C. Y. Lu, X. Q. Zhou, O. Gühne, W. B. Gao, J. Zhang, Z. S. Yuan, A. Goebel, T. Yang, and J. W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3, 91–95 (2007).
[CrossRef]

Nature (5)

D. Leibfried, E. Knill, S. Seidelin, J. Britton, R. B. Blakestad, J. Chiaverini, D. B. Hume, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, R. Reichle, and D. J. Wineland, “Creation of a six-atom “Schrödinger cat” state,” Nature 438, 639–642 (2005).
[CrossRef]

E. Knill, R. Lafamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[CrossRef]

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature 453, 1031–1042 (2008).
[CrossRef]

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf, “Preparation and measurement of three-qubit entanglement in a superconducting circuit,” Nature 467, 574–578 (2010).
[CrossRef]

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424, 831–838 (2003).
[CrossRef]

New J. Phys. (1)

L. D. Carr, D. Demille, R. V. Krems, and J. Ye, “Cold and ultracold molecules: science, technology and applications,” New J. Phys. 11, 055049 (2009).
[CrossRef]

Opt. Commun. (1)

M. F. Chen, C. L. Zhang, and S. S. Ma, “Generation of W state and NOON state of distant polar molecules ensembles via a triple hybrid device,” Opt. Commun. 306, 21–25 (2013).
[CrossRef]

Phys. Rev. A (14)

Q. Chen, W. L. Yang, and M. Feng, “Generation of macroscopic entangled coherent states for distant ensembles of polar molecules via effective coupling to a superconducting charge qubit,” Phys. Rev. A 86, 045801 (2012).
[CrossRef]

A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
[CrossRef]

C. P. Yang, S. B. Zheng, and F. Nori, “Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity,” Phys. Rev. A 82, 062326 (2010).
[CrossRef]

C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, “Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit,” Phys. Rev. A 87, 022320 (2013).
[CrossRef]

J. Modławska and A. Grudka, “Adaptive quantum teleportation,” Phys. Rev. A 79, 064302 (2009).
[CrossRef]

J. D. Franson, M. M. Donegan, and B. C. Jacobs, “Generation of entangled ancilla states for use in linear optics quantum computing,” Phys. Rev. A 69, 052328 (2004).
[CrossRef]

K. Lemr and J. Fiurášek, “Preparation of entangled states of two photons in several spatial modes,” Phys. Rev. A 77, 023802 (2008).
[CrossRef]

K. Lemr, A. Černoch, J. Soubusta, and J. Fiurášek, “Experimental preparation of two-photon Knill-Laflamme-Milburn states,” Phys. Rev. A 81, 012321 (2010).
[CrossRef]

H. Y. Yu, Y. Luo, and W. Yao, “Generating coherent states of entangled spins,” Phys. Rev. A 84, 032337 (2011).
[CrossRef]

X. Y. Chen, P. Yu, L. Z. Jiang, and M. Z. Tian, “Genuine entanglement of four-qubit cluster diagonal states,” Phys. Rev. A 87, 012322 (2013).
[CrossRef]

G. C. Guo and Y. S. Zhang, “Scheme for preparation of the W state via cavity quantum electrodynamics,” Phys. Rev. A 65, 054302 (2002).
[CrossRef]

D. B. Hume, C. W. Chou, T. Rosenband, and D. J. Wineland, “Preparation of Dicke states in an ion chain,” Phys. Rev. A 80, 052302 (2009).
[CrossRef]

X. B. Zou, J. Shu, and G. C. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down conversions,” Phys. Rev. A 73, 054301 (2006).
[CrossRef]

M. Hillery, V. Bužek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A 59, 1829–1834 (1999).
[CrossRef]

Phys. Rev. B (1)

O. Gywat, F. Meier, D. Loss, and D. D. Awschalom, “Dynamics of coupled qubits interacting with an off-resonant cavity,” Phys. Rev. B 73, 125336 (2006).
[CrossRef]

Phys. Rev. Lett. (15)

X. X. Yi, X. H. Su, and L. You, “Conditional quantum phase gate between two 3-state atoms,” Phys. Rev. Lett. 90, 097902 (2003).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000).
[CrossRef]

G. Vidal, “Efficient classical simulation of slightly entangled quantum computations,” Phys. Rev. Lett. 91, 147902 (2003).
[CrossRef]

E. Hagley, X. Maître, G. Nogues, C. Wunderlich, M. Brune, J. M. Raimond, and S. Haroche, “Generation of Einstein-Podolsky-Rosen pairs of atoms,” Phys. Rev. Lett. 79, 1–5 (1997).
[CrossRef]

S. B. Zheng, “One-step synthesis of multiatom Greenberger-Horne-Zeilinger states,” Phys. Rev. Lett. 87, 230404 (2001).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett. 69, 2881–2884 (1992).
[CrossRef]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993).
[CrossRef]

K. Mattle, H. Weinfurter, P. G. Kwiat, and A. Zeilinger, “Dense coding in experimental quantum communication,” Phys. Rev. Lett. 76, 4656–4659 (1996).
[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef]

P. Bertet, S. Osnaghi, P. Milman, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Generating and probing a two-photon Fock state with a single atom in a cavity,” Phys. Rev. Lett. 88, 143601 (2002).
[CrossRef]

J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input–output process,” Phys. Rev. Lett. 95, 160501 (2005).
[CrossRef]

S. Popescu, “Knill-Laflamme-Milburn quantum computation with bosonic atoms,” Phys. Rev. Lett. 99, 130503 (2007).
[CrossRef]

P. Rabl, D. DeMille, J. M. Doyle, M. D. Lukin, R. J. Schoelkopf, and P. Zoller, “Hybrid quantum processors: molecular ensembles as quantum memory for solid state circuits,” Phys. Rev. Lett. 97, 033003 (2006).
[CrossRef]

S. D. Huber and H. P. Büchler, “Dipole-interaction-mediated laser cooling of polar molecules to ultracold temperatures,” Phys. Rev. Lett. 108, 193006 (2012).
[CrossRef]

B. Zhao, A. W. Glaetzle, G. Pupillo, and P. Zoller, “Atomic Rydberg reservoirs for polar molecules,” Phys. Rev. Lett. 108, 193007 (2012).
[CrossRef]

Phys. Today (1)

J. Q. You and F. Nori, “Superconducting circuits and quantum information,” Phys. Today 58(11), 42–47 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic setup of two PMs ensembles placed in the two separate TLRs coupled by a SCQ and the level diagram for the PM and the SCQ, where gs is the coupling strength between TLR and SCQ. Ω is the rabi frequency of microwave pulse.

Fig. 2.
Fig. 2.

Density plots of the fidelity as a function of η1 and η3 with (a) η0=η2=0. (b) η0=η2=0.1.

Fig. 3.
Fig. 3.

(a) Schematic circuit of the tunable controlled phase gate. The setup involves two SCQs and a TLR. (b) The level configuration of the SCQ.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Hs=ωs2σz+Ω(σeiωdt+σ+eiωdt)+ωm2Sz+ωcaa+gs(σ+a+σa)+gm(S+a+Sa),
Heff=12(2λsd+λsc)σz+g(σ+b+σb)+Nλmcbb,
|es|ncos(gn+1t)|es|nisin(gn+1t)|gs|n+1,
|gs|n+1cos(gn+1t)|gs|n+1isin(gn+1t)|es|n,
|Ψ1=[cos(Ωt0)|isieiϕsin(Ωt0)|es]|01|02.
|Ψ2=[cos(Ωt0)|is|01eiϕsin(Ωt0)|gs|11]|02.
|Ψ3=cos(Ωt0)|is|01|02eiϕsin(Ωt0)cos(Ωt2)|gs|11|02+iei(ϕ+ϕ)sin(Ωt0)sin(Ωt2)|es|11|02.
|Ψ4=cos(Ωt0)|is|01|02eiϕsin(Ωt0)cos(Ωt2)|gs|11|02+ei(ϕ+ϕ)sin(Ωt0)sin(Ωt2)|gs|11|12.
|Ψ5=cos(Ωt0)|es|01|02eiϕsin(Ωt0)cos(Ωt2)|gs|11|02+ei(ϕ+ϕ)sin(Ωt0)sin(Ωt2)|gs|11|12.
|Ψ6=12|gs[α|01|02β|11|02+γ|11|12]+12|es[α|01|02+β|11|02γ|11|12],
|Ψ7=16|gs[|01|02|11|02+|11|12]+16|es[|01|02+|11|02|11|12].
F=|α*α+β*β+γ*γ|2,
H=j=1,2[(ωeiΓj2)|eje|+ωg|gjg|]+12j=1,2(Ωjσj+eiωdt+gjσj+a+h.c)+(ωciκ)aa,
|i1|i2|i1|i2,|g1|i2|g1|i2,|i1|g2|i1|g2,|g1|g2eiφ|g1|g2,
12(|i1+|g1)(|i2+|g2)12(|i,i12+|i,g12+|g,i12+i|g,g12).
12(|i,i12+|i,g12+|g,i12+i|g,g)12122[2|i,i12+(1+i)|g,i12+(i1)|g,g12].
|ΨKLM=12N+1[α0|iN+j=1N1αj|gj|iNj+αN|gN],
|ΨKLM=12N[α0|iN+j=1N1αj|gj|iNj+αN|gN],

Metrics