Abstract

We present a hybrid discrete-dipole approximation (DDA)/layer-multiple-scattering (LMS) method for treating photonic structures consisting of general scatterers. The present method is a major extension of the existing LMS formalism and code that combine the merits of both the DDA and LMS technique. Namely, the new hybrid DDA/LMS technique treats, in principle, scatterers of general (nonspherical) shape that might be anisotropic and/or inhomogeneous, thanks to the DDA component while, at the same time, it incorporates theoretical tools provided by the LMS method, such as the doubling-layer process and the complex frequency band structure that are not met in contemporary electromagnetic solvers. The merging of both techniques is accomplished via a point-matching module that provides the scattering T-matrix of an arbitrary scatterer. To demonstrate the applicability of the new method, we study the optical properties of 2D and 3D plasmonic lattices of gold nanocubes.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995).
  2. F. G. J. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
    [CrossRef]
  3. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford, 2009).
  4. P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
    [CrossRef]
  5. P. Monk, Finite Element Methods for Maxwell’s Equations (Clarendon, 2003).
  6. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  7. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).
  8. C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time-domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113, 1728–1740 (2012).
    [CrossRef]
  9. S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
    [CrossRef]
  10. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
    [CrossRef]
  11. N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys.Condens. Mat. 4, 7389 (1992).
  12. N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
    [CrossRef]
  13. N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
    [CrossRef]
  14. G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035114 (2006).
    [CrossRef]
  15. G. Gantzounis, N. Stefanou, and N. Paanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77, 035101 (2008).
    [CrossRef]
  16. A. Christofi and N. Stefanou, “Nonreciprocal optical response of helical periodic structures of plasma spheres in a static magnetic field,” Phys. Rev. B 87, 115125 (2013).
    [CrossRef]
  17. A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
    [CrossRef]
  18. V. Yannopapas and A. G. Vanakaras, “Layer-multiple scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B 84, 085119 (2011).
    [CrossRef]
  19. V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
    [CrossRef]
  20. B. T. Draine, “The discrete-dipole approximation and its application to stellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
    [CrossRef]
  21. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  22. M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
    [CrossRef]
  23. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008).
    [CrossRef]
  24. A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
    [CrossRef]
  25. A. B. Evlyukhin, C. Reinhardt, E. Evyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
    [CrossRef]
  26. M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
    [CrossRef]
  27. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
    [CrossRef]
  28. A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
    [CrossRef]
  29. S. Droulias and V. Yannopapas, “Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles,” J. Phys. Chem. C 117, 1130–1135 (2013).
    [CrossRef]
  30. P. C. Chaumet and A. Rahmani, “Efficient discrete dipole approximation for magnetoelectric scatterers,” Opt. Lett. 34, 917–919 (2009).
    [CrossRef]
  31. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  32. P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
    [CrossRef]
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  34. V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
    [CrossRef]
  35. V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
    [CrossRef]
  36. C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
    [CrossRef]
  37. R. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  38. V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
    [CrossRef]
  39. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time-domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
    [CrossRef]
  40. C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time-domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
    [CrossRef]
  41. A. Deinega, S. Belousov, and I. Valuev, “Transfer-matrix approach for finite-difference time-domain simulation of periodic structures,” Phys. Rev. E 88, 055305 (2013).
    [CrossRef]

2013 (5)

A. Christofi and N. Stefanou, “Nonreciprocal optical response of helical periodic structures of plasma spheres in a static magnetic field,” Phys. Rev. B 87, 115125 (2013).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, E. Evyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[CrossRef]

S. Droulias and V. Yannopapas, “Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles,” J. Phys. Chem. C 117, 1130–1135 (2013).
[CrossRef]

A. Deinega, S. Belousov, and I. Valuev, “Transfer-matrix approach for finite-difference time-domain simulation of periodic structures,” Phys. Rev. E 88, 055305 (2013).
[CrossRef]

2012 (3)

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time-domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[CrossRef]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time-domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113, 1728–1740 (2012).
[CrossRef]

2011 (3)

V. Yannopapas and A. G. Vanakaras, “Layer-multiple scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B 84, 085119 (2011).
[CrossRef]

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

2010 (2)

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

2009 (2)

P. C. Chaumet and A. Rahmani, “Efficient discrete dipole approximation for magnetoelectric scatterers,” Opt. Lett. 34, 917–919 (2009).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[CrossRef]

2008 (3)

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A 25, 2693–2703 (2008).
[CrossRef]

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

G. Gantzounis, N. Stefanou, and N. Paanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77, 035101 (2008).
[CrossRef]

2007 (4)

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

F. G. J. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time-domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
[CrossRef]

2006 (1)

G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035114 (2006).
[CrossRef]

2002 (1)

S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
[CrossRef]

2000 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

1999 (1)

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

1998 (1)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

1997 (1)

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).

1995 (1)

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[CrossRef]

1994 (1)

1992 (1)

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys.Condens. Mat. 4, 7389 (1992).

1988 (1)

B. T. Draine, “The discrete-dipole approximation and its application to stellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

1972 (1)

R. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1971 (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Bell, P. M.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[CrossRef]

Belousov, S.

A. Deinega, S. Belousov, and I. Valuev, “Transfer-matrix approach for finite-difference time-domain simulation of periodic structures,” Phys. Rev. E 88, 055305 (2013).
[CrossRef]

Bi, L.

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Brock, R. S.

Chaumet, P. C.

Chichkov, B. N.

A. B. Evlyukhin, C. Reinhardt, E. Evyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Christofi, A.

A. Christofi and N. Stefanou, “Nonreciprocal optical response of helical periodic structures of plasma spheres in a static magnetic field,” Phys. Rev. B 87, 115125 (2013).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

Christy, R. W.

R. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

de Abajo, F. G. J.

F. G. J. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

de Abajo, F. J. G.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

de Kanter, D.

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[CrossRef]

Deinega, A.

A. Deinega, S. Belousov, and I. Valuev, “Transfer-matrix approach for finite-difference time-domain simulation of periodic structures,” Phys. Rev. E 88, 055305 (2013).
[CrossRef]

Draine, B. T.

Droulias, S.

S. Droulias and V. Yannopapas, “Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles,” J. Phys. Chem. C 117, 1130–1135 (2013).
[CrossRef]

Evlyukhin, A. B.

A. B. Evlyukhin, C. Reinhardt, E. Evyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Evyukhin, E.

Flatau, P. J.

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Gantzounis, G.

G. Gantzounis, N. Stefanou, and N. Paanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77, 035101 (2008).
[CrossRef]

G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035114 (2006).
[CrossRef]

Gippius, N. A.

S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
[CrossRef]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Heckenberg, N. R.

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[CrossRef]

Hoekstra, A. G.

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time-domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Ishihara, T.

S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995).

Johnson, R. B.

R. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Karathanos, V.

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys.Condens. Mat. 4, 7389 (1992).

Lederer, F.

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Liu, C.

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time-domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
[CrossRef]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time-domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113, 1728–1740 (2012).
[CrossRef]

Liu, Q. H.

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Loke, V. L. Y.

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[CrossRef]

Lu, J. Q.

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Martín-Moreno, L.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995).

Menzel, C.

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Modinos, A.

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys.Condens. Mat. 4, 7389 (1992).

Monk, P.

P. Monk, Finite Element Methods for Maxwell’s Equations (Clarendon, 2003).

Mühlig, S.

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Muljarov, E. A.

S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
[CrossRef]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Nieminen, T. A.

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[CrossRef]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Paanikolaou, N.

G. Gantzounis, N. Stefanou, and N. Paanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77, 035101 (2008).
[CrossRef]

Panetta, R. L.

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time-domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113, 1728–1740 (2012).
[CrossRef]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time-domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
[CrossRef]

Parkin, S. J.

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[CrossRef]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Pendry, J. B.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[CrossRef]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

Rahmani, A.

Reinhardt, C.

A. B. Evlyukhin, C. Reinhardt, E. Evyukhin, and B. N. Chichkov, “Multipole analysis of light scattering by arbitrary-shaped nanoparticles on a plane surface,” J. Opt. Soc. Am. B 30, 2589–2598 (2013).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Rockstuhl, C.

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Rodríguez-Fernádez, J.

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Rubinsztein-Dunlop, H.

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[CrossRef]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

Shamonina, E.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford, 2009).

Solymar, L.

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford, 2009).

Stefanou, N.

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal optical response of helical periodic structures of plasma spheres in a static magnetic field,” Phys. Rev. B 87, 115125 (2013).
[CrossRef]

G. Gantzounis, N. Stefanou, and N. Paanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77, 035101 (2008).
[CrossRef]

G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035114 (2006).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys.Condens. Mat. 4, 7389 (1992).

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Tikhodeev, S. G.

S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
[CrossRef]

Valuev, I.

A. Deinega, S. Belousov, and I. Valuev, “Transfer-matrix approach for finite-difference time-domain simulation of periodic structures,” Phys. Rev. E 88, 055305 (2013).
[CrossRef]

Vanakaras, A. G.

V. Yannopapas and A. G. Vanakaras, “Layer-multiple scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B 84, 085119 (2011).
[CrossRef]

Ward, A. J.

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[CrossRef]

Waterman, P. C.

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995).

Yablonksii, A. L.

S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
[CrossRef]

Yang, P.

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time-domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113, 1728–1740 (2012).
[CrossRef]

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time-domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
[CrossRef]

Yannopapas, V.

S. Droulias and V. Yannopapas, “Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles,” J. Phys. Chem. C 117, 1130–1135 (2013).
[CrossRef]

V. Yannopapas and A. G. Vanakaras, “Layer-multiple scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B 84, 085119 (2011).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

Yurkin, M. A.

C. Liu, L. Bi, R. L. Panetta, P. Yang, and M. A. Yurkin, “Comparison between the pseudo-spectral time-domain method and the discrete dipole approximation for light scattering simulations,” Opt. Express 20, 16763–16776 (2012).
[CrossRef]

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[CrossRef]

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time-domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007).
[CrossRef]

Zywietz, U.

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[CrossRef]

Astrophys. J. (2)

E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
[CrossRef]

B. T. Draine, “The discrete-dipole approximation and its application to stellar graphite grains,” Astrophys. J. 333, 848–872 (1988).
[CrossRef]

Chem. Soc. Rev. (1)

V. Myroshnychenko, J. Rodríguez-Fernádez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. G. de Abajo, “Modeling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008).
[CrossRef]

Comput. Phys. Commun. (3)

N. Stefanou, V. Yannopapas, and A. Modinos, “Heterostructures of photonic crystals: frequency bands and transmission coefficients,” Comput. Phys. Commun. 113, 49 (1998).
[CrossRef]

N. Stefanou, V. Yannopapas, and A. Modinos, “MULTEM 2: a new version of the program for transmission and band-structure calculations of photonic crystals,” Comput. Phys. Commun. 132, 189 (2000).
[CrossRef]

P. M. Bell, J. B. Pendry, L. Martín-Moreno, and A. J. Ward, “A program for calculating photonic band structures and transmission coefficients of complex structures,” Comput. Phys. Commun. 85, 306–322 (1995).
[CrossRef]

J. Nanophoton. (1)

M. A. Yurkin, D. de Kanter, and A. G. Hoekstra, “Accuracy of the discrete dipole approximation for simulation of optical properties of gold nanoparticles,” J. Nanophoton. 4, 041585 (2010).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

S. Droulias and V. Yannopapas, “Broad-band giant circular dichroism in metamaterials of twisted chains of metallic nanoparticles,” J. Phys. Chem. C 117, 1130–1135 (2013).
[CrossRef]

J. Phys.Condens. Mat. (1)

N. Stefanou, V. Karathanos, and A. Modinos, “Scattering of electromagnetic waves by periodic structures,” J. Phys.Condens. Mat. 4, 7389 (1992).

J. Quant. Spectrosc. Radiat. Transfer (4)

M. A. Yurkin and A. G. Hoekstra, “The discrete dipole approximation: an overview and recent developments,” J. Quant. Spectrosc. Radiat. Transfer 106, 558–589 (2007).
[CrossRef]

C. Liu, R. L. Panetta, and P. Yang, “Application of the pseudo-spectral time-domain method to compute particle single-scattering properties for size parameters up to 200,” J. Quant. Spectrosc. Radiat. Transfer 113, 1728–1740 (2012).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “T-matrix calculation via discrete dipole approximation, point matching and exploiting symmetry,” J. Quant. Spectrosc. Radiat. Transfer 110, 1460–1471 (2009).
[CrossRef]

V. L. Y. Loke, T. A. Nieminen, S. J. Parkin, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “FDTD/T-matrix hybrid method,” J. Quant. Spectrosc. Radiat. Transfer 106, 274–284 (2007).
[CrossRef]

Metamaterials (1)

C. Menzel, S. Mühlig, C. Rockstuhl, and F. Lederer, “Multipole analysis of meta-atoms,” Metamaterials 5, 64–73 (2011).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. (1)

S. G. Tikhodeev, A. L. Yablonksii, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. 66, 045102 (2002).
[CrossRef]

Phys. Rev. B (10)

G. Gantzounis and N. Stefanou, “Layer-multiple-scattering method for photonic crystals of nonspherical particles,” Phys. Rev. B 73, 035114 (2006).
[CrossRef]

G. Gantzounis, N. Stefanou, and N. Paanikolaou, “Optical properties of periodic structures of metallic nanodisks,” Phys. Rev. B 77, 035101 (2008).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal optical response of helical periodic structures of plasma spheres in a static magnetic field,” Phys. Rev. B 87, 115125 (2013).
[CrossRef]

A. Christofi and N. Stefanou, “Nonreciprocal photonic surface states in periodic structures of magnetized plasma nanospheres,” Phys. Rev. B 88, 125133 (2013).
[CrossRef]

V. Yannopapas and A. G. Vanakaras, “Layer-multiple scattering theory for metamaterials made from clusters of nanoparticles,” Phys. Rev. B 84, 085119 (2011).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, U. Zywietz, and B. N. Chichkov, “Collective resonances in metal nanoparticle arrays with dipole-quadrupole interactions,” Phys. Rev. B 85, 245411 (2012).
[CrossRef]

A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation,” Phys. Rev. B 84, 235429 (2011).
[CrossRef]

R. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

V. Yannopapas, A. Modinos, and N. Stefanou, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999).
[CrossRef]

Phys. Rev. D (1)

P. C. Waterman, “Symmetry, unitarity, and geometry in electromagnetic scattering,” Phys. Rev. D 3, 825–839 (1971).
[CrossRef]

Phys. Rev. E (1)

A. Deinega, S. Belousov, and I. Valuev, “Transfer-matrix approach for finite-difference time-domain simulation of periodic structures,” Phys. Rev. E 88, 055305 (2013).
[CrossRef]

Rev. Mod. Phys. (1)

F. G. J. de Abajo, “Colloquium: light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007).
[CrossRef]

Other (6)

L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford, 2009).

P. Monk, Finite Element Methods for Maxwell’s Equations (Clarendon, 2003).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals (Princeton, 1995).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

J. D. Jackson, Classical Electrodynamics (Wiley, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Modeling steps in the hybrid DDA/LMS method.

Fig. 2.
Fig. 2.

Flowchart of the hybrid DDA/LMS method.

Fig. 3.
Fig. 3.

Extinction (solid), scattering (dotted), and absorption (dashed line) cross sections (in arbitrary units) for light incident normally on one of the faces of gold nanocube with 100 nm edge. The curves are calculated by assuming 512 dipoles in the DDA and lmax=7 in the angular momentum expansion. The inset shows the relative error in the scattering spectrum when assuming angular momentum cutoffs lmax=6 and lmax=7 (black line), as well as the DDA convergence, when assuming 93=729 and 103=1000 point dipoles within the nanocube (gray line).

Fig. 4.
Fig. 4.

Transmittance, reflectance, and absorbance for light incident normally on an infinitely periodic 2D square array of 100 nm gold nanocubes with lattice constant a=150nm.

Fig. 5.
Fig. 5.

(a) Dispersion curves along the [001] crystallographic direction of simple cubic crystal of 100 nm gold nanocubes with lattice constant a=150nm. The solid (broken) line depicts the dispersion of the real (imaginary) part of kz. (b) Reflectance and (c) absorbance of light incident normally on finite slabs of various thicknesses (number of layers) of the simple cubic crystal of (a).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

Pi=α˜iEi,
Ei=Ei0jiAij·Pj,
Aij=exp(ikrij)rij[k2(r^ijr^ij13)+ikrij1rij2(3r^ijr^ij13)],ij,
j=1NAijPj=Ei0,
Aii=[α˜i]1.
α˜i=Vs3ϵh4π[ϵ˜sϵh13][ϵ˜s+2ϵh13]1.
E+(rp)=iApiPi,
E˜(r,t)=Re[E(r)exp(iωt)].
E(r)=l=1m=ll{almHfl(qr)Xlm(r^)+almEiq×[fl(qr)Xlm(r^)]},
B(r)=ϵμc0l=1m=ll{almEfl(qr)Xlm(r^)almHiq×[fl(qr)Xlm(r^)]},
E0(r)=LaL0JL(r),
JElm(r)=iqh×jl(qhr)Xlm(r^),JHlm(r)=jl(qhr)Xlm(r^),
E+(r)=LaL+HL(r),
HElm(r)=iqh×hl+(qhr)Xlm(r^),HHlm(r)=hl+(qhr)Xlm(r^).
aL+=LTLLaL0,
aL+=TLL0.
LTLL0HL(rp)=E+(rp).

Metrics