Abstract

We investigate the two-dimensional (2D) population distribution in a semiconductor quantum dot nanostructure driven by two orthogonal standing-wave lasers. It is found that, due to the position-dependent quantum interference effect, the 2D spatial population distribution of two upper states can be easily controlled via adjusting the system parameters. Thus, our scheme shows the underlying probability for the formation of the 2D localization effect in a solid.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient two-dimensional atom localization via spontaneously generated coherence and incoherent pump

Tao Shui, Zhiping Wang, and Benli Yu
J. Opt. Soc. Am. B 32(2) 210-217 (2015)

Two-dimensional atom localization via interacting double-dark resonances

Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao
J. Opt. Soc. Am. B 28(4) 622-628 (2011)

Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system

Ren-Gang Wan, Jun Kou, Li Jiang, Yun Jiang, and Jin-Yue Gao
J. Opt. Soc. Am. B 28(1) 10-17 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription