Abstract

A highly compact 2×2 photonic crystal (PhC) passive wavelength router (λ-router) is proposed. The proposed λ-router exploits two photonic crystal ring resonators (PCRRs) having a 3.2 μm diameter and a broadband PhC waveguide crossing. The router topology, allowing assembly into higher-order matrices capable of connecting multiple transmitters with multiple receivers, can be exploited as a basic building block for the design, through a compositional approach, of more complex photonic integrated networks. The design criteria, derived by applying the finite difference time domain and the plane wave expansion methods, are reported. Moreover, the analysis of a 4×4 λ-router configuration, obtained by assembling four 2×2 basic switching elements, is reported to highlight the potentiality of the basic routing element to be assembled into compact higher-order matrices that exhibit small footprints of 24μm×24μm and a maximum crosstalk between the ports equal to 20.1dB.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
    [CrossRef]
  2. A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
    [CrossRef]
  3. C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, “A mid-infrared multichanneled filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves Appl. 25, 1360–1371 (2011).
  4. G. Calò, A. Farinola, and V. Petruzzelli, “Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution,” J. Opt. Soc. Am. B 28, 1668–1679 (2011).
    [CrossRef]
  5. G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active WDM filter on dilute nitride quantum well photonic band gap waveguide,” Prog. Electromagn. Res. 35, 37–49 (2012).
    [CrossRef]
  6. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
    [CrossRef]
  7. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
    [CrossRef]
  8. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
    [CrossRef]
  9. D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40 Gbit/s optical modulation in silicon,” Opt. Express 19, 11507–11516 (2011).
    [CrossRef]
  10. X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
    [CrossRef]
  11. B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
    [CrossRef]
  12. J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029, (2009).
    [CrossRef]
  13. J. Van Campenhout, W. M. J. Green, and Y. A. Vlasov, “Design of a digital, ultra-broadband electro-optic switch for reconfigurable networks-on-chip,” Opt. Express 17, 23793–23801 (2009).
    [CrossRef]
  14. G. Calò, D. Alexandropoulos, A. D’Orazio, and V. Petruzzelli, “Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides,” Phys. Status Solidi B 248, 1212–1215 (2011).
    [CrossRef]
  15. G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active photonic band-gap switch based on GaInNAs multiquantum well,” IEEE Photon. J. 4, 1936–1946 (2012).
    [CrossRef]
  16. G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach–Zehnder switch for photonic networks on chip,” J. Lightwave Technol. 30, 944–952 (2012).
    [CrossRef]
  17. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
    [CrossRef]
  18. G. Calò and V. Petruzzelli, “WDM performances of two- and three-waveguide Mach–Zehnder switches assembled into 4×4 matrix router,” Prog. Electromagn. Res. 38, 1–16 (2013).
    [CrossRef]
  19. A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, “Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering,” Opt. Express 16, 3101–3113 (2008).
    [CrossRef]
  20. V. M. N. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. Nanotechnol. 7, 401–408 (2008).
    [CrossRef]
  21. G. Calò and V. Petruzzelli, “Photonic interconnects for chip multiprocessing architectures,” in 14th International Conference on Transparent Optical Networks (ICTON), July2–5, 2012, paper 6253941.
  22. A. Kazmierczak, W. Bogaerts, E. Drouard, F. Dortu, P. Rojo-Romeo, F. Gaffiot, D. Van Thourhout, and D. Giannone, “Highly integrated optical 4×4 crossbar in silicon-on-insulator technology,” J. Lightwave Technol. 27, 3317–3323 (2009).
    [CrossRef]
  23. L. Ramini and D. Bertozzi, “Power efficiency of wavelength-routed optical NoC topologies for global connectivity of 3D multi-core processors,” in Proceedings of the Fifth International Network on Chip (ACM, 2012), pp. 25–30.
  24. L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi, “Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis,” in Design Automation & Test in Europe (DATE), Grenoble, France, March18–22, 2013.
  25. N. Kirman and J. F. Martinez, “A power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing,” Comput. Archit. News 38, 15–28 (2010).
    [CrossRef]
  26. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  27. G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, “Photonic band gap active waveguide filters based on dilute nitrides,” Phys. Status Solidi C 10, 567–572 (2013).
    [CrossRef]
  28. M. J. Moghimi, H. Ghafoori-Fard, and A. Rostami, “Analysis and design of all-optical switching in apodized and chirped Bragg gratings,” Prog. Electromagn. Res. 8, 87–102 (2008).
    [CrossRef]
  29. G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
    [CrossRef]
  30. A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
    [CrossRef]
  31. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
    [CrossRef]
  32. G. Calò, V. Petruzzelli, L. Mescia, and F. Prudenzano, “Study of gain in photonic band gap active InP waveguides,” J. Opt. Soc. Am. B 26, 2414–2422 (2009).
    [CrossRef]
  33. Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
    [CrossRef]
  34. Z. Qiang, W. Zhou, R. A. Soref, and Z. Ma, “Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators,” Proc. SPIE 6896, 68960B (2008).
    [CrossRef]
  35. H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7855–7860 (2005).
  36. S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
    [CrossRef]
  37. S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostr. Fundam. Appl. 4, 103–115 (2006).
    [CrossRef]
  38. W. Y. Chiu, T. W. Huang, Y. H. Wu, F. H. Huang, Y.-J. Chan, C. H. Hou, H. T. Chien, C.-C. Chen, S. H. Chen, and J. I. Chyi, “Directional coupler formed by photonic crystal InAlGaAs nanorods,” J. Lightwave Technol. 26, 488–491 (2008).
    [CrossRef]
  39. C.-C. Chen, C.-Y. Chen, W.-K. Wang, F.-H. Huang, C.-K. Lin, W.-Y. Chiu, and Y.-J. Chan, “Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Opt. Express 13, 38–43 (2005).
    [CrossRef]
  40. L. Ferrier, O. El Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, “Surface emitting microlaser based on 2D photonic crystal rod lattices,” Opt. Express 17, 9780–9788 (2009).
    [CrossRef]
  41. W.-Y. Chiu, T.-W. Huang, Y.-H. Wu, Y.-J. Chan, C.-H. Hou, H.-T. Chien, and C.-C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15, 15500–15506 (2007).
    [CrossRef]
  42. G. Calò and V. Petruzzelli, “Photonic components for signal routing in optical networks on chip,” in 15th International Conference on Transparent Optical Networks (ICTON), June23–27, 2013.
  43. G. Calò and V. Petruzzelli, “Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators,” IEEE Photon. J. 5, 7901011 (2013).
    [CrossRef]
  44. X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a scalable, non-blocking optical router for photonic networks-on-chip designs,” in Symposium on Photonics and Optoelectronics (SOPO), May16–18, 2011.
  45. RSoft Inc., RSoft Photonics CAD Suite, http://www.rsoftdesign.com .
  46. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
    [CrossRef]
  47. S. S. Lo, M. S. Wang, and C. C. Chen, “Semiconductor hollow optical waveguides formed by omnidirectional reflectors,” Opt. Express 12, 6589–6593 (2004).
    [CrossRef]
  48. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  49. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
    [CrossRef]
  50. R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Microring-resonator-based four-port optical router for photonic networks-on-chip,” Opt. Express 19, 18945–18955 (2011).
    [CrossRef]

2013 (3)

G. Calò and V. Petruzzelli, “WDM performances of two- and three-waveguide Mach–Zehnder switches assembled into 4×4 matrix router,” Prog. Electromagn. Res. 38, 1–16 (2013).
[CrossRef]

G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, “Photonic band gap active waveguide filters based on dilute nitrides,” Phys. Status Solidi C 10, 567–572 (2013).
[CrossRef]

G. Calò and V. Petruzzelli, “Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators,” IEEE Photon. J. 5, 7901011 (2013).
[CrossRef]

2012 (5)

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active photonic band-gap switch based on GaInNAs multiquantum well,” IEEE Photon. J. 4, 1936–1946 (2012).
[CrossRef]

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
[CrossRef]

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active WDM filter on dilute nitride quantum well photonic band gap waveguide,” Prog. Electromagn. Res. 35, 37–49 (2012).
[CrossRef]

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach–Zehnder switch for photonic networks on chip,” J. Lightwave Technol. 30, 944–952 (2012).
[CrossRef]

2011 (6)

2010 (1)

N. Kirman and J. F. Martinez, “A power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing,” Comput. Archit. News 38, 15–28 (2010).
[CrossRef]

2009 (6)

2008 (7)

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
[CrossRef]

M. J. Moghimi, H. Ghafoori-Fard, and A. Rostami, “Analysis and design of all-optical switching in apodized and chirped Bragg gratings,” Prog. Electromagn. Res. 8, 87–102 (2008).
[CrossRef]

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

Z. Qiang, W. Zhou, R. A. Soref, and Z. Ma, “Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators,” Proc. SPIE 6896, 68960B (2008).
[CrossRef]

V. M. N. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. Nanotechnol. 7, 401–408 (2008).
[CrossRef]

A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, “Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering,” Opt. Express 16, 3101–3113 (2008).
[CrossRef]

W. Y. Chiu, T. W. Huang, Y. H. Wu, F. H. Huang, Y.-J. Chan, C. H. Hou, H. T. Chien, C.-C. Chen, S. H. Chen, and J. I. Chyi, “Directional coupler formed by photonic crystal InAlGaAs nanorods,” J. Lightwave Technol. 26, 488–491 (2008).
[CrossRef]

2007 (5)

2006 (1)

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostr. Fundam. Appl. 4, 103–115 (2006).
[CrossRef]

2005 (2)

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7855–7860 (2005).

C.-C. Chen, C.-Y. Chen, W.-K. Wang, F.-H. Huang, C.-K. Lin, W.-Y. Chiu, and Y.-J. Chan, “Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Opt. Express 13, 38–43 (2005).
[CrossRef]

2004 (2)

S. S. Lo, M. S. Wang, and C. C. Chen, “Semiconductor hollow optical waveguides formed by omnidirectional reflectors,” Opt. Express 12, 6589–6593 (2004).
[CrossRef]

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

2002 (1)

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

1998 (1)

1996 (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

1995 (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

Alexandropoulos, D.

G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, “Photonic band gap active waveguide filters based on dilute nitrides,” Phys. Status Solidi C 10, 567–572 (2013).
[CrossRef]

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active photonic band-gap switch based on GaInNAs multiquantum well,” IEEE Photon. J. 4, 1936–1946 (2012).
[CrossRef]

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active WDM filter on dilute nitride quantum well photonic band gap waveguide,” Prog. Electromagn. Res. 35, 37–49 (2012).
[CrossRef]

G. Calò, D. Alexandropoulos, A. D’Orazio, and V. Petruzzelli, “Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides,” Phys. Status Solidi B 248, 1212–1215 (2011).
[CrossRef]

Assefa, S.

Bartolini, S.

L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi, “Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis,” in Design Automation & Test in Europe (DATE), Grenoble, France, March18–22, 2013.

Bendickson, J. M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

Bergman, K.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Bertozzi, D.

L. Ramini and D. Bertozzi, “Power efficiency of wavelength-routed optical NoC topologies for global connectivity of 3D multi-core processors,” in Proceedings of the Fifth International Network on Chip (ACM, 2012), pp. 25–30.

L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi, “Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis,” in Design Automation & Test in Europe (DATE), Grenoble, France, March18–22, 2013.

Bhargava, A.

A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
[CrossRef]

Biberman, A.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Bienstman, P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Bogaerts, W.

Calò, G.

G. Calò and V. Petruzzelli, “Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators,” IEEE Photon. J. 5, 7901011 (2013).
[CrossRef]

G. Calò and V. Petruzzelli, “WDM performances of two- and three-waveguide Mach–Zehnder switches assembled into 4×4 matrix router,” Prog. Electromagn. Res. 38, 1–16 (2013).
[CrossRef]

G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, “Photonic band gap active waveguide filters based on dilute nitrides,” Phys. Status Solidi C 10, 567–572 (2013).
[CrossRef]

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active photonic band-gap switch based on GaInNAs multiquantum well,” IEEE Photon. J. 4, 1936–1946 (2012).
[CrossRef]

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active WDM filter on dilute nitride quantum well photonic band gap waveguide,” Prog. Electromagn. Res. 35, 37–49 (2012).
[CrossRef]

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach–Zehnder switch for photonic networks on chip,” J. Lightwave Technol. 30, 944–952 (2012).
[CrossRef]

G. Calò, A. Farinola, and V. Petruzzelli, “Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution,” J. Opt. Soc. Am. B 28, 1668–1679 (2011).
[CrossRef]

G. Calò, D. Alexandropoulos, A. D’Orazio, and V. Petruzzelli, “Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides,” Phys. Status Solidi B 248, 1212–1215 (2011).
[CrossRef]

G. Calò, V. Petruzzelli, L. Mescia, and F. Prudenzano, “Study of gain in photonic band gap active InP waveguides,” J. Opt. Soc. Am. B 26, 2414–2422 (2009).
[CrossRef]

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

G. Calò and V. Petruzzelli, “Photonic interconnects for chip multiprocessing architectures,” in 14th International Conference on Transparent Optical Networks (ICTON), July2–5, 2012, paper 6253941.

G. Calò and V. Petruzzelli, “Photonic components for signal routing in optical networks on chip,” in 15th International Conference on Transparent Optical Networks (ICTON), June23–27, 2013.

Chan, Y.-J.

Chang, C. C.

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7855–7860 (2005).

Chen, C. C.

Chen, C.-C.

Chen, C.-Y.

Chen, H.

Chen, S. H.

Chen, W.-H.

C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, “A mid-infrared multichanneled filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves Appl. 25, 1360–1371 (2011).

Chen, Y. F.

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7855–7860 (2005).

Chern, R. L.

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7855–7860 (2005).

Chetrit, Y.

Chien, H. T.

Chien, H.-T.

Chiu, W. Y.

Chiu, W.-Y.

Chyi, J. I.

Ciftcioglu, B.

Cowan, A. R.

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

D’Orazio, A.

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach–Zehnder switch for photonic networks on chip,” J. Lightwave Technol. 30, 944–952 (2012).
[CrossRef]

G. Calò, D. Alexandropoulos, A. D’Orazio, and V. Petruzzelli, “Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides,” Phys. Status Solidi B 248, 1212–1215 (2011).
[CrossRef]

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

De Leonardis, F.

De Sario, M.

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

Dell’Olio, F.

V. M. N. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. Nanotechnol. 7, 401–408 (2008).
[CrossRef]

Ding, J.

Doany, F. E.

Dong, P.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Dortu, F.

Dowling, J. P.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

Drouard, E.

El Daif, O.

Fan, S.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

Farinola, A.

Fedeli, J.-M.

Ferrier, L.

Fournier, M.

Fu, H. K.

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7855–7860 (2005).

Gaffiot, F.

Gao, S.

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Gardes, F. Y.

Ghafoori-Fard, H.

M. J. Moghimi, H. Ghafoori-Fard, and A. Rostami, “Analysis and design of all-optical switching in apodized and chirped Bragg gratings,” Prog. Electromagn. Res. 8, 87–102 (2008).
[CrossRef]

Giannone, D.

Grande, M.

G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, “Photonic band gap active waveguide filters based on dilute nitrides,” Phys. Status Solidi C 10, 567–572 (2013).
[CrossRef]

Grani, P.

L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi, “Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis,” in Design Automation & Test in Europe (DATE), Grenoble, France, March18–22, 2013.

Green, W. M. J.

Grosse, P.

Haus, H. A.

He, S.

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Hou, C. H.

Hou, C.-H.

Hu, Y.

Huang, F. H.

Huang, F.-H.

Huang, T. W.

Huang, T.-W.

Ippen, E. P.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Izhaky, N.

Jahnes, C. V.

Ji, R.

Jiang, Y.

X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a scalable, non-blocking optical router for photonic networks-on-chip designs,” in Symposium on Photonics and Optoelectronics (SOPO), May16–18, 2011.

Joannopoulos, J. D.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Johnson, S. G.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Kash, J. A.

Kazmierczak, A.

Kirman, N.

N. Kirman and J. F. Martinez, “A power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing,” Comput. Archit. News 38, 15–28 (2010).
[CrossRef]

Kolodziejski, L. A.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Kumar, A.

A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
[CrossRef]

Kumar, V.

A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
[CrossRef]

Lee, B. G.

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
[CrossRef]

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Lee, M.-H.

C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, “A mid-infrared multichanneled filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves Appl. 25, 1360–1371 (2011).

Letartre, X.

Liao, L.

Lin, C.-K.

Lipson, M.

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

Liu, A.

Liu, A. Q.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostr. Fundam. Appl. 4, 103–115 (2006).
[CrossRef]

Lo, S. S.

Lu, Y.

Ma, Z.

Z. Qiang, W. Zhou, R. A. Soref, and Z. Ma, “Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators,” Proc. SPIE 6896, 68960B (2008).
[CrossRef]

Manipatruni, S.

Martinez, J. F.

N. Kirman and J. F. Martinez, “A power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing,” Comput. Archit. News 38, 15–28 (2010).
[CrossRef]

Mashanovich, G.

Mazurczyk, R.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Mescia, L.

G. Calò, V. Petruzzelli, L. Mescia, and F. Prudenzano, “Study of gain in photonic band gap active InP waveguides,” J. Opt. Soc. Am. B 26, 2414–2422 (2009).
[CrossRef]

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

Moghimi, M. J.

M. J. Moghimi, H. Ghafoori-Fard, and A. Rostami, “Analysis and design of all-optical switching in apodized and chirped Bragg gratings,” Prog. Electromagn. Res. 8, 87–102 (2008).
[CrossRef]

Nguyen, H.

Paniccia, M.

Passaro, V. M. N.

A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, “Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering,” Opt. Express 16, 3101–3113 (2008).
[CrossRef]

V. M. N. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. Nanotechnol. 7, 401–408 (2008).
[CrossRef]

Petrich, G. S.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Petruzzelli, V.

G. Calò and V. Petruzzelli, “Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators,” IEEE Photon. J. 5, 7901011 (2013).
[CrossRef]

G. Calò and V. Petruzzelli, “WDM performances of two- and three-waveguide Mach–Zehnder switches assembled into 4×4 matrix router,” Prog. Electromagn. Res. 38, 1–16 (2013).
[CrossRef]

G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, “Photonic band gap active waveguide filters based on dilute nitrides,” Phys. Status Solidi C 10, 567–572 (2013).
[CrossRef]

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active photonic band-gap switch based on GaInNAs multiquantum well,” IEEE Photon. J. 4, 1936–1946 (2012).
[CrossRef]

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active WDM filter on dilute nitride quantum well photonic band gap waveguide,” Prog. Electromagn. Res. 35, 37–49 (2012).
[CrossRef]

G. Calò, A. D’Orazio, and V. Petruzzelli, “Broadband Mach–Zehnder switch for photonic networks on chip,” J. Lightwave Technol. 30, 944–952 (2012).
[CrossRef]

G. Calò, A. Farinola, and V. Petruzzelli, “Equalization in photonic bandgap multiwavelength filters by the Newton binomial distribution,” J. Opt. Soc. Am. B 28, 1668–1679 (2011).
[CrossRef]

G. Calò, D. Alexandropoulos, A. D’Orazio, and V. Petruzzelli, “Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides,” Phys. Status Solidi B 248, 1212–1215 (2011).
[CrossRef]

G. Calò, V. Petruzzelli, L. Mescia, and F. Prudenzano, “Study of gain in photonic band gap active InP waveguides,” J. Opt. Soc. Am. B 26, 2414–2422 (2009).
[CrossRef]

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

G. Calò and V. Petruzzelli, “Photonic interconnects for chip multiprocessing architectures,” in 14th International Conference on Transparent Optical Networks (ICTON), July2–5, 2012, paper 6253941.

G. Calò and V. Petruzzelli, “Photonic components for signal routing in optical networks on chip,” in 15th International Conference on Transparent Optical Networks (ICTON), June23–27, 2013.

Prudenzano, F.

G. Calò, V. Petruzzelli, L. Mescia, and F. Prudenzano, “Study of gain in photonic band gap active InP waveguides,” J. Opt. Soc. Am. B 26, 2414–2422 (2009).
[CrossRef]

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

Qiang, Z.

Z. Qiang, W. Zhou, R. A. Soref, and Z. Ma, “Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators,” Proc. SPIE 6896, 68960B (2008).
[CrossRef]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
[CrossRef]

Rakich, P. T.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Ramini, L.

L. Ramini and D. Bertozzi, “Power efficiency of wavelength-routed optical NoC topologies for global connectivity of 3D multi-core processors,” in Proceedings of the Fifth International Network on Chip (ACM, 2012), pp. 25–30.

L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi, “Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis,” in Design Automation & Test in Europe (DATE), Grenoble, France, March18–22, 2013.

Reed, G. T.

Rojo Romeo, P.

Rojo-Romeo, P.

Rooks, M. J.

Rostami, A.

M. J. Moghimi, H. Ghafoori-Fard, and A. Rostami, “Analysis and design of all-optical switching in apodized and chirped Bragg gratings,” Prog. Electromagn. Res. 8, 87–102 (2008).
[CrossRef]

Rubin, D.

Scalora, M.

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

Schmidt, B.

Schow, C. L.

Seassal, C.

Sekaric, L.

Shakya, J.

Singh, J.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostr. Fundam. Appl. 4, 103–115 (2006).
[CrossRef]

Singh, K. S.

A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
[CrossRef]

Smith, H. I.

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Soref, R. A.

Z. Qiang, W. Zhou, R. A. Soref, and Z. Ma, “Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators,” Proc. SPIE 6896, 68960B (2008).
[CrossRef]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
[CrossRef]

Suthar, B.

A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
[CrossRef]

Tan, X.

X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a scalable, non-blocking optical router for photonic networks-on-chip designs,” in Symposium on Photonics and Optoelectronics (SOPO), May16–18, 2011.

Teo, S. H. G.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostr. Fundam. Appl. 4, 103–115 (2006).
[CrossRef]

Thomson, D. J.

Tian, Y.

Tsarev, A. V.

Van Campenhout, J.

Van Thourhout, D.

Viktorovitch, P.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

Vlasov, Y. A.

Wang, M. S.

Wang, W.-K.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Wu, C.-J.

C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, “A mid-infrared multichanneled filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves Appl. 25, 1360–1371 (2011).

Wu, Y. H.

Wu, Y.-H.

Xu, Q.

Yang, J.

X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a scalable, non-blocking optical router for photonic networks-on-chip designs,” in Symposium on Photonics and Optoelectronics (SOPO), May16–18, 2011.

Yang, L.

Yang, M.

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
[CrossRef]

X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a scalable, non-blocking optical router for photonic networks-on-chip designs,” in Symposium on Photonics and Optoelectronics (SOPO), May16–18, 2011.

Yang, T.-J.

C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, “A mid-infrared multichanneled filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves Appl. 25, 1360–1371 (2011).

Young, J. F.

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

Yu, M. B.

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostr. Fundam. Appl. 4, 103–115 (2006).
[CrossRef]

Zhang, L.

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Microring-resonator-based four-port optical router for photonic networks-on-chip,” Opt. Express 19, 18945–18955 (2011).
[CrossRef]

X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a scalable, non-blocking optical router for photonic networks-on-chip designs,” in Symposium on Photonics and Optoelectronics (SOPO), May16–18, 2011.

Zhang, X.

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

Zhou, P.

Zhou, W.

Z. Qiang, W. Zhou, R. A. Soref, and Z. Ma, “Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators,” Proc. SPIE 6896, 68960B (2008).
[CrossRef]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
[CrossRef]

Zhu, W.

Appl. Phys. Lett. (1)

S. Assefa, P. T. Rakich, P. Bienstman, S. G. Johnson, G. S. Petrich, J. D. Joannopoulos, L. A. Kolodziejski, E. P. Ippen, and H. I. Smith, “Guiding 1.5 μm light in photonic crystals based on dielectric rods,” Appl. Phys. Lett. 85, 6110–6112 (2004).
[CrossRef]

Comput. Archit. News (1)

N. Kirman and J. F. Martinez, “A power-efficient all-optical on-chip interconnect using wavelength-based oblivious routing,” Comput. Archit. News 38, 15–28 (2010).
[CrossRef]

IEEE Photon. J. (2)

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active photonic band-gap switch based on GaInNAs multiquantum well,” IEEE Photon. J. 4, 1936–1946 (2012).
[CrossRef]

G. Calò and V. Petruzzelli, “Wavelength routers for optical networks on chip using optimized photonic crystal ring resonators,” IEEE Photon. J. 5, 7901011 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. G. Lee, A. Biberman, P. Dong, M. Lipson, and K. Bergman, “All-optical comb switch for multiwavelength message routing in silicon photonic networks,” IEEE Photon. Technol. Lett. 20, 767–769 (2008).
[CrossRef]

IEEE Trans. Nanotechnol. (2)

G. Calò, A. D’Orazio, M. De Sario, L. Mescia, V. Petruzzelli, and F. Prudenzano, “Tunability of photonic band gap notch filters,” IEEE Trans. Nanotechnol. 7, 273–284 (2008).
[CrossRef]

V. M. N. Passaro and F. Dell’Olio, “Scaling and optimization of MOS optical modulators in nanometer SOI waveguides,” IEEE Trans. Nanotechnol. 7, 401–408 (2008).
[CrossRef]

J. Appl. Phys. (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “Theoretical investigation of fabrication-related disorder on the properties of photonic crystals,” J. Appl. Phys. 78, 1415–1418 (1995).
[CrossRef]

J. Electromagn. Waves Appl. (1)

C.-J. Wu, M.-H. Lee, W.-H. Chen, and T.-J. Yang, “A mid-infrared multichanneled filter in a photonic crystal heterostructure containing negative-permittivity materials,” J. Electromagn. Waves Appl. 25, 1360–1371 (2011).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (2)

Opt. Express (16)

J. Van Campenhout, W. M. J. Green, and Y. A. Vlasov, “Design of a digital, ultra-broadband electro-optic switch for reconfigurable networks-on-chip,” Opt. Express 17, 23793–23801 (2009).
[CrossRef]

J. Van Campenhout, W. M. J. Green, S. Assefa, and Y. A. Vlasov, “Low-power, 2×2 silicon electro-optic switch with 110-nm bandwidth for broadband reconfigurable optical networks,” Opt. Express 17, 24020–24029, (2009).
[CrossRef]

M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-blocking 4×4 electro-optic silicon switch for on-chip photonic networks,” Opt. Express 19, 47–54 (2011).
[CrossRef]

D. J. Thomson, F. Y. Gardes, Y. Hu, G. Mashanovich, M. Fournier, P. Grosse, J.-M. Fedeli, and G. T. Reed, “High contrast 40 Gbit/s optical modulation in silicon,” Opt. Express 19, 11507–11516 (2011).
[CrossRef]

L. Ferrier, O. El Daif, X. Letartre, P. Rojo Romeo, C. Seassal, R. Mazurczyk, and P. Viktorovitch, “Surface emitting microlaser based on 2D photonic crystal rod lattices,” Opt. Express 17, 9780–9788 (2009).
[CrossRef]

R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, “Microring-resonator-based four-port optical router for photonic networks-on-chip,” Opt. Express 19, 18945–18955 (2011).
[CrossRef]

H. K. Fu, Y. F. Chen, R. L. Chern, and C. C. Chang, “Connected hexagonal photonic crystals with largest full band gap,” Opt. Express 13, 7855–7860 (2005).

S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998).
[CrossRef]

C.-C. Chen, C.-Y. Chen, W.-K. Wang, F.-H. Huang, C.-K. Lin, W.-Y. Chiu, and Y.-J. Chan, “Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Opt. Express 13, 38–43 (2005).
[CrossRef]

S. S. Lo, M. S. Wang, and C. C. Chen, “Semiconductor hollow optical waveguides formed by omnidirectional reflectors,” Opt. Express 12, 6589–6593 (2004).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007).
[CrossRef]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007).
[CrossRef]

Z. Qiang, W. Zhou, and R. A. Soref, “Optical add-drop filters based on photonic crystal ring resonators,” Opt. Express 15, 1823–1831 (2007).
[CrossRef]

W.-Y. Chiu, T.-W. Huang, Y.-H. Wu, Y.-J. Chan, C.-H. Hou, H.-T. Chien, and C.-C. Chen, “A photonic crystal ring resonator formed by SOI nano-rods,” Opt. Express 15, 15500–15506 (2007).
[CrossRef]

W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator,” Opt. Express 15, 17106–17113 (2007).
[CrossRef]

A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, “Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering,” Opt. Express 16, 3101–3113 (2008).
[CrossRef]

Photon. Nanostr. Fundam. Appl. (1)

S. H. G. Teo, A. Q. Liu, M. B. Yu, and J. Singh, “Fabrication and demonstration of square lattice two-dimensional rod-type photonic bandgap crystal optical intersections,” Photon. Nanostr. Fundam. Appl. 4, 103–115 (2006).
[CrossRef]

Phys. Rev. B (1)

A. R. Cowan and J. F. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys. Rev. B 65, 085106 (2002).
[CrossRef]

Phys. Rev. E (1)

J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996).
[CrossRef]

Phys. Status Solidi B (1)

G. Calò, D. Alexandropoulos, A. D’Orazio, and V. Petruzzelli, “Wavelength selective switching in dilute nitrides multi quantum well photonic band gap waveguides,” Phys. Status Solidi B 248, 1212–1215 (2011).
[CrossRef]

Phys. Status Solidi C (1)

G. Calò, M. Grande, D. Alexandropoulos, and V. Petruzzelli, “Photonic band gap active waveguide filters based on dilute nitrides,” Phys. Status Solidi C 10, 567–572 (2013).
[CrossRef]

Proc. SPIE (1)

Z. Qiang, W. Zhou, R. A. Soref, and Z. Ma, “Ultra-compact polymer and silicon modulator design based on photonic crystal ring resonators,” Proc. SPIE 6896, 68960B (2008).
[CrossRef]

Prog. Electromagn. Res. (5)

G. Calò, D. Alexandropoulos, and V. Petruzzelli, “Active WDM filter on dilute nitride quantum well photonic band gap waveguide,” Prog. Electromagn. Res. 35, 37–49 (2012).
[CrossRef]

X. Zhang, S. Gao, and S. He, “Optimal design of a silicon-on-insulator nanowire waveguide for broadband wavelength conversion,” Prog. Electromagn. Res. 89, 183–198 (2009).
[CrossRef]

A. Kumar, B. Suthar, V. Kumar, K. S. Singh, and A. Bhargava, “Tunable wavelength demultiplexer for DWDM application using 1-D photonic crystal,” Prog. Electromagn. Res. 33, 27–35 (2012).
[CrossRef]

G. Calò and V. Petruzzelli, “WDM performances of two- and three-waveguide Mach–Zehnder switches assembled into 4×4 matrix router,” Prog. Electromagn. Res. 38, 1–16 (2013).
[CrossRef]

M. J. Moghimi, H. Ghafoori-Fard, and A. Rostami, “Analysis and design of all-optical switching in apodized and chirped Bragg gratings,” Prog. Electromagn. Res. 8, 87–102 (2008).
[CrossRef]

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75, 046402 (2012).
[CrossRef]

Other (8)

L. Ramini and D. Bertozzi, “Power efficiency of wavelength-routed optical NoC topologies for global connectivity of 3D multi-core processors,” in Proceedings of the Fifth International Network on Chip (ACM, 2012), pp. 25–30.

L. Ramini, P. Grani, S. Bartolini, and D. Bertozzi, “Contrasting wavelength-routed optical NoC topologies for power-efficient 3D-stacked multicore processors using physical-layer analysis,” in Design Automation & Test in Europe (DATE), Grenoble, France, March18–22, 2013.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

X. Tan, M. Yang, L. Zhang, Y. Jiang, and J. Yang, “On a scalable, non-blocking optical router for photonic networks-on-chip designs,” in Symposium on Photonics and Optoelectronics (SOPO), May16–18, 2011.

RSoft Inc., RSoft Photonics CAD Suite, http://www.rsoftdesign.com .

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

G. Calò and V. Petruzzelli, “Photonic interconnects for chip multiprocessing architectures,” in 14th International Conference on Transparent Optical Networks (ICTON), July2–5, 2012, paper 6253941.

G. Calò and V. Petruzzelli, “Photonic components for signal routing in optical networks on chip,” in 15th International Conference on Transparent Optical Networks (ICTON), June23–27, 2013.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Scheme of the 2×2 PCRR router. The optical signal launched at the S port is transmitted at the W port if its wavelength is coincident with one of the PCRR resonances (e.g., λ1), whereas all the other wavelengths (e.g., λ2,λ3,) are transmitted at the N port.

Fig. 2.
Fig. 2.

Transmittance for broadband PhC waveguide crossing at the N (dotted curve), W and E (solid curve) ports, when the input signal is launched at the S port. The crosstalk between the through (N) and the isolated (E, W) ports is below 10dB in the wavelength range from λ=1.32μm to λ=1.60μm.

Fig. 3.
Fig. 3.

Pattern of the electric field of the PCRR resonant modes: (a) dipole, (b) quadrupole, (c) hexapole, and (d) octupole.

Fig. 4.
Fig. 4.

(a) and (b) Scheme of the two degenerate hexapole resonant modes. The black arrow denotes the input signal, whereas the blue and the green ones denote the decaying resonant mode. The symmetry planes and the decaying resonant modes are also evidenced. (c) Scheme of the 1×2 PCRR router.

Fig. 5.
Fig. 5.

Resonance wavelength, λ, of the different resonant modes as a function of the central rod radius rA for lattice constant a=0.540μm; dipole (dashed curves), quadrupole (dotted curves), hexapole (thick solid curves), and octupole (thin solid curves).

Fig. 6.
Fig. 6.

(a) Transmittance for the PCRR 2×2 switch at the W (solid curve), N (dotted curve), and E (dashed curve) ports, when the input signal is launched at the S port. (b) Transmittance spectrum around the resonance of the hexapole mode at λ=1.5137μm. The radius of the PCRR central rods is equal to rA=0.175×a.

Fig. 7.
Fig. 7.

Transmittance spectra pertaining to the (a) hexapole and to the (b) dipole resonances, calculated at the W (solid curve), N (dotted curve), and E (dashed curve) ports, for the PCRR router with central rod radius rA=0.024μm.

Fig. 8.
Fig. 8.

Scheme of the 4×4 PCRR λ-router. The input and output ports are denoted by the arrow directions.

Fig. 9.
Fig. 9.

Transmittance spectra calculated at the S (solid curve), N (dashed curve), and E (dotted curve) output ports of the GWOR considering a Gaussian pulse launched as input signal at the W input port. The values of the central rod radius are R1=0.094μm and R2=0.090μm.

Fig. 10.
Fig. 10.

Transmittance spectra calculated at the S (solid curve), N (dashed curve), and E (dotted curve) output ports of the GWOR considering a Gaussian pulse launched as input signal at the W input port. The values of the central rod radius are R1=0.132μm and R2=0.136μm.

Tables (2)

Tables Icon

Table 1. Wavelengths of the PCRR Resonant Modes for Central Rod Radius r=0.175×a and Lattice Constant a=0.540μm

Tables Icon

Table 2. Links between the Input and the Output Ports According to the Wavelength of the Input Signal

Metrics