Abstract

Spin-exchange relaxation-free (SERF) atomic magnetometers usually adopt Faraday modulation to achieve better performance but suffer from laser intensity noise, thermal noise generated by the Faraday modulator, and nonmagnetic technical noise. These noises limit the sensitivity of the SERF magnetometer. We demonstrate a SERF magnetic gradiometer with dual-beam and closed-loop Faraday modulation. Operating in the SERF regime, the gradiometer utilizes an additional Faraday modulator rotation feedback to suppress probe laser intensity noise and thermal noise associated with the Faraday modulator, and it simultaneously uses dual-beam difference to cancel common-mode nonmagnetic technical noises. A gradient sensitivity of 14fT/Hz1/2 per 1 cm gradiometer base length was achieved using Cs atoms.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
    [CrossRef]
  2. J. Belfi, G. Bevilacqua, V. Biancalana, S. Cartaleva, Y. Dancheva, and L. Moi, “Cesium coherent population trapping magnetometer for cardiosignal detection in an unshielded environment,” J. Opt. Soc. Am. B 24, 2357–2362 (2007).
    [CrossRef]
  3. H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
    [CrossRef]
  4. G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22, 77–87 (2005).
    [CrossRef]
  5. J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
    [CrossRef]
  6. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
    [CrossRef]
  7. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
    [CrossRef]
  8. R. L. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77, 101101 (2006).
    [CrossRef]
  9. M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
    [CrossRef]
  10. M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
    [CrossRef]
  11. Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
    [CrossRef]
  12. T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012).
    [CrossRef]
  13. A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
    [CrossRef]
  14. Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89, 134105 (2006).
    [CrossRef]
  15. J. Vrba, “SQUID gradiometers in real environments,” in SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock, ed., Vol. 329 of NATO ASI Series E: Applied Sciences (Kluwer, 1996), pp. 117–178.
  16. C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
    [CrossRef]
  17. V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
    [CrossRef]
  18. V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
    [CrossRef]
  19. V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
    [CrossRef]
  20. F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann, “Laser power stabilization for second-generation gravitational wave detectors,” Opt. Lett. 31, 2000–2002 (2006).
    [CrossRef]
  21. S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation (Princeton University, 2008).
  22. T. W. Kornack, “A test of CPT and Lorentz symmetry using a K-3He comagnetometer,” Ph.D. dissertation (Princeton University, 2005).

2012 (2)

T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012).
[CrossRef]

V. Schultze, R. IJsselsteijn, T. Scholtes, S. Woetzel, and H.-G. Meyer, “Characteristics and performance of an intensity-modulated optically pumped magnetometer in comparison to the classical Mx magnetometer,” Opt. Express 20, 14201–14212 (2012).
[CrossRef]

2011 (2)

A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
[CrossRef]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[CrossRef]

2010 (2)

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
[CrossRef]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

2008 (3)

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
[CrossRef]

2007 (1)

2006 (4)

F. Seifert, P. Kwee, M. Heurs, B. Willke, and K. Danzmann, “Laser power stabilization for second-generation gravitational wave detectors,” Opt. Lett. 31, 2000–2002 (2006).
[CrossRef]

H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[CrossRef]

R. L. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77, 101101 (2006).
[CrossRef]

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89, 134105 (2006).
[CrossRef]

2005 (1)

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

2002 (2)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

2000 (1)

D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
[CrossRef]

Acosta, V. M.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

Affolderbach, C.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

Baranga, A. B.

H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[CrossRef]

Baranga, A. B.-A.

A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
[CrossRef]

Bear, D.

D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
[CrossRef]

Belfi, J.

Bevilacqua, G.

Biancalana, V.

Bison, G.

Budker, D.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

Cartaleva, S.

Dancheva, Y.

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

Danzmann, K.

Fagaly, R. L.

R. L. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77, 101101 (2006).
[CrossRef]

Gerginov, V.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
[CrossRef]

Gusarov, A.

A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
[CrossRef]

Heurs, M.

Hoffman, D.

H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[CrossRef]

Hollberg, L.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
[CrossRef]

IJsselsteijn, R.

Ito, Y.

T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012).
[CrossRef]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[CrossRef]

Kamada, K.

T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012).
[CrossRef]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[CrossRef]

Kitching, J.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

Knappe, S.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Kobayashi, T.

T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012).
[CrossRef]

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[CrossRef]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Kornack, T. W.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

T. W. Kornack, “A test of CPT and Lorentz symmetry using a K-3He comagnetometer,” Ph.D. dissertation (Princeton University, 2005).

Kostelecky, V. A.

D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
[CrossRef]

Kwee, P.

Lane, C. D.

D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
[CrossRef]

Ledbetter, M. P.

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

Levron, D.

A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
[CrossRef]

Li, Z.

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89, 134105 (2006).
[CrossRef]

Lyman, R. N.

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

Meyer, H.-G.

Michalak, D. J.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

Moi, L.

Ohnishi, H.

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[CrossRef]

Oida, T.

T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012).
[CrossRef]

Paperno, E.

A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
[CrossRef]

Pines, A.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

Romalis, M. V.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[CrossRef]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

Savukov, I. M.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

Scholtes, T.

Schultze, V.

Seifert, F.

Seltzer, S. J.

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation (Princeton University, 2008).

Shah, V.

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
[CrossRef]

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

Shuker, R.

A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
[CrossRef]

Stähler, M.

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Stoner, R. E.

D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
[CrossRef]

Vrba, J.

J. Vrba, “SQUID gradiometers in real environments,” in SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock, ed., Vol. 329 of NATO ASI Series E: Applied Sciences (Kluwer, 1996), pp. 117–178.

Wakai, R. T.

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89, 134105 (2006).
[CrossRef]

Walker, T. G.

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89, 134105 (2006).
[CrossRef]

Walsworth, R. L.

D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
[CrossRef]

Weis, A.

Willke, B.

Woetzel, S.

Wynands, R.

G. Bison, R. Wynands, and A. Weis, “Optimization and performance of an optical cardiomagnetometer,” J. Opt. Soc. Am. B 22, 77–87 (2005).
[CrossRef]

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

Xia, H.

H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[CrossRef]

Xu, S.

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

Appl. Phys. B (2)

C. Affolderbach, M. Stähler, S. Knappe, and R. Wynands, “An all-optical, high sensitivity magnetic gradiometer,” Appl. Phys. B 75, 605–612 (2002).
[CrossRef]

V. Schultze, R. IJsselsteijn, and H.-G. Meyer, “Noise reduction in optically pumped magnetometer assemblies,” Appl. Phys. B 100, 717–724 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

Z. Li, R. T. Wakai, and T. G. Walker, “Parametric modulation of an atomic magnetometer,” Appl. Phys. Lett. 89, 134105 (2006).
[CrossRef]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[CrossRef]

H. Xia, A. B. Baranga, D. Hoffman, and M. V. Romalis, “Magnetoencephalography with an atomic magnetometer,” Appl. Phys. Lett. 89, 211104 (2006).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

V. Gerginov, S. Knappe, V. Shah, L. Hollberg, and J. Kitching, “Laser noise cancellation in single-cell CPT clocks,” IEEE Trans. Instrum. Meas. 57, 1357–1361 (2008).
[CrossRef]

IEEE Trans. Magn. (1)

Y. Ito, H. Ohnishi, K. Kamada, and T. Kobayashi, “Sensitivity improvement of spin-exchange relaxation free atomic magnetometers by hybrid optical pumping of potassium and rubidium,” IEEE Trans. Magn. 47, 3550–3553 (2011).
[CrossRef]

J. Appl. Phys. (1)

A. Gusarov, D. Levron, A. B.-A. Baranga, E. Paperno, and R. Shuker, “An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation,” J. Appl. Phys. 109, 07E507 (2011).
[CrossRef]

J. Magn. Reson. (1)

T. Oida, Y. Ito, K. Kamada, and T. Kobayashi, “Detecting rotating magnetic fields using optically pumped atomic magnetometers for measuring ultra-low-field magnetic resonance signals,” J. Magn. Reson. 217, 6–9 (2012).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (1)

M. P. Ledbetter, I. M. Savukov, V. M. Acosta, and D. Budker, “Spin-exchange-relaxation-free magnetometry with Cs vapor,” Phys. Rev. A 77, 033408 (2008).
[CrossRef]

Phys. Rev. Lett. (2)

J. C. Allred, R. N. Lyman, T. W. Kornack, and M. V. Romalis, “High sensitivity atomic magnetometer unaffected by spin-exchange relaxation,” Phys. Rev. Lett. 89, 130801 (2002).
[CrossRef]

D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky, and C. D. Lane, “Limit on Lorentz and CPT violation of the neutron using a two-species noble-gas maser,” Phys. Rev. Lett. 85, 5038–5041 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

M. P. Ledbetter, I. M. Savukov, D. Budker, V. Shah, S. Knappe, J. Kitching, D. J. Michalak, S. Xu, and A. Pines, “Zero-field remote detection of NMR with a microfabricated atomic magnetometer,” Proc. Natl. Acad. Sci. USA 105, 2286–2290 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

R. L. Fagaly, “Superconducting quantum interference device instruments and applications,” Rev. Sci. Instrum. 77, 101101 (2006).
[CrossRef]

Other (3)

J. Vrba, “SQUID gradiometers in real environments,” in SQUID Sensors: Fundamentals, Fabrication and Applications, H. Weinstock, ed., Vol. 329 of NATO ASI Series E: Applied Sciences (Kluwer, 1996), pp. 117–178.

S. J. Seltzer, “Developments in alkali-metal atomic magnetometry,” Ph.D. dissertation (Princeton University, 2008).

T. W. Kornack, “A test of CPT and Lorentz symmetry using a K-3He comagnetometer,” Ph.D. dissertation (Princeton University, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

General schematic of SERF magnetometer. The pump beam polarizes the alkali atoms along the z direction. The spins aligned along the z direction press into the x direction under a magnetic field along the y direction. This x projection of the spins is measured through optical rotation of a linearly polarized probe beam.

Fig. 2.
Fig. 2.

Detection system of Faraday modulation in SERF magnetometer. (a) Conventional Faraday modulation detection system. (b) Dual-beam and closed-loop Faraday modulation detection system.

Fig. 3.
Fig. 3.

Drawing of the SERF magnetic gradiometer with dual-beam and closed-loop Faraday modulation. The cell is placed in a nonmagnetic oven and heated by a hot air flow. The oven is located inside a four-layer set of cylindrical magnetic shields with compensating magnetic coils. The pump laser transmits in the z direction with frequency detuned to the D1 line of Cs. The probe laser propagates in the x direction with frequency red detuned 0.2 nm from the D2 line of Cs, and the Faraday modulation method is used for probing the direction of atomic spin to measure the output signal of the SERF magnetometer.

Fig. 4.
Fig. 4.

Comparison of the magnetic sensitivity of the SERF magnetometer with dual-beam and closed-loop Faraday modulation detection system and the conventional detection system. (a) Magnetic field sensitivity of the dual-beam and closed-loop Faraday modulation detection system (solid red line) and sensitivity of conventional detection system (solid blue line). The dashed lines represent photon shot noise. (b), (c) Frequency response of the magnetometer with (b) dual-beam and closed-loop Faraday modulation detection system and (c) conventional detection system.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

P⃗t=1Q(P)(γeB⃗×P⃗+(Rp(s⃗pP⃗)RsdP⃗),
Pz=RpRp+Rsd.
Px=γePzRp+RsdBy.
θ=π4lnrecfPx(υυ0)[(υυ0)2+(Δυ/2)2],
θ=π4lnrecfγeRp(υυ0)[(υυ0)2+(Δυ/2)2](Rp+Rsd)2By,
I=I0sin2[θ+θn+αsin(ωmodt)],
II0[(θ+θn)2+2(θ+θn)αsin(ωmodt)+α2sin2(ωmodt)].
SLock-in2I0(θ+θn)α.
SLock-in2I0(ε+η+ζ+θ+θn)α.
S12I1(ε+η+ζ+θ1+θn1+θb1)α,
ε+η+ζ+θ1+θn1+θb1=0.
S22I2(ε+η+ζ+θ2+θn2+θb1+θb2)α,
ε+η+ζ+θ2+θn2+θb1+θb2=0.
θb2=θ1θ2+θn1θn2.
θb2=θ1θ2,
δBy=Rp+RsdγePzδPx.
δPx=2(υυ0)lrencf2Φ,
δBy=Rp+RsdγePz2(υυ0)lrencf2Φ.

Metrics