Abstract

In this paper, the transmission behaviors of a light pulse through nested nonlinear microring resonators (NMRs) and gratings are investigated. The system design consists of two-defect gratings incorporating nested NMR and the uniform grating. In modeling, the laser pulse with wavelength centered at 1.55 μm is input into the waveguide of the NMR via the two-defect and uniform gratings. The resonant outputs from the two-defect gratings are propagated through the NMR and grating, where the delay times of pulses with different wavelengths through the system are obtained and distinguished by the output grating (uniform grating). From the obtained resonant outputs, we found that the redshifted and blueshifted (Čerenkov radiation) signals occurred and were seen. In applications, such a proposed system can be used to form two different optical trapping probes, where the trapped photons can be propagated by the modulated light pulse within the device, while the Čerenkov radiation of the trapped atoms or molecules within the system can be useful for Čerenkov radiation investigation, imaging, and sensing applications.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef]
  2. H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
    [CrossRef]
  3. H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add–drop devices,” Opt. Lett. 35, 2855–2857 (2010).
    [CrossRef]
  4. N. Suwanpayak, M. A. Jalil, C. Teeka, J. Ali, and P. P. Yupapin, “Optical vortices generated by a PANDA ring resonator for drug trapping and delivery applications,” Biomed. Opt. Express 2, 159–168 (2011).
    [CrossRef]
  5. J. Lee, J. A. Grover, L. A. Orozco, and S. L. Rolston, “Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap,” J. Opt. Soc. Am. B 30, 2869–2874 (2013).
    [CrossRef]
  6. H. Shen, G. Lu, T. Zhang, J. Liu, Y. He, Y. Wang, and Q. Gong, “Molecule fluorescence modified by a slit-based nanoantenna with dual gratings,” J. Opt. Soc. Am. B 30, 2420–2426 (2013).
    [CrossRef]
  7. J. Sakai and Y. Suzuki, “Equivalence between in-phase and antiresonant reflection conditions in Bragg fiber and its application to antiresonant reflecting optical waveguide-type fibers,” J. Opt. Soc. Am. B 28, 183–192 (2011).
    [CrossRef]
  8. P. Li and E. T. Yu, “Large-area omnidirectional antireflection coating on low-index materials,” J. Opt. Soc. Am. B 30, 2584–2588 (2013).
    [CrossRef]
  9. C. Vazquez and O. Schwelb, “Tunable, narrow-band, grating-assisted microring reflectors,” Opt. Commun. 281, 4910–4916 (2008).
    [CrossRef]
  10. I. Chremmos and O. Schwelb, “Optimization, bandwidth and the effect of loss on the characteristics of the coupled ring reflector,” Opt. Commun. 282, 3712–3719 (2009).
    [CrossRef]
  11. S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
    [CrossRef]
  12. Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
    [CrossRef]
  13. Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2009).
    [CrossRef]
  14. L. G. Yang, C. H. Yeh, C. Y. Wong, C. W. Chow, F. G. Tseng, and H. K. Tsang, “Stable and wavelength-tunable silicon-microring-resonator based erbium-doped fiber laser,” Opt. Express 21, 2869–2874 (2013).
    [CrossRef]
  15. X. Li, K. Xie, and H.-M. Jiang, “Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects,” Opt. Commun. 282, 4292–4295 (2009).
    [CrossRef]
  16. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
    [CrossRef]
  17. C. R. Philips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phase matching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013).
    [CrossRef]
  18. S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
    [CrossRef]
  19. C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
    [CrossRef]
  20. J. J. Saarinen and J. E. Sipe, “A Green function approach to surface optics in anisotropic media,” J. Mod. Opt. 55, 13–32 (2008).
    [CrossRef]
  21. G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
    [CrossRef]
  22. G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
    [CrossRef]
  23. P. Kaspar, R. Kappeler, D. Erni, and H. Jackel, “Average light velocities in periodic media,” J. Opt. Soc. Am. B 30, 2849–2854 (2013).
    [CrossRef]
  24. J. Cheng, J. H. Lee, K. Wang, C. Xu, K. G. Jespersen, M. Garmund, L. Grüner-Nielsen, and D. Jakobsen, “Generation of Čerenkov radiation at 850 nm in higher-order-mode fiber,” Opt. Express 19, 8774–8780 (2011).
    [CrossRef]
  25. J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
    [CrossRef]
  26. K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, T. Misawa, and B. Lee, “Feasibility of fiber-optic radiation sensor using Čerenkov effect for detecting thermal neutrons,” Opt. Express 21, 14573–14582 (2013).
    [CrossRef]
  27. B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
    [CrossRef]

2013 (9)

J. Lee, J. A. Grover, L. A. Orozco, and S. L. Rolston, “Sub-Doppler cooling of neutral atoms in a grating magneto-optical trap,” J. Opt. Soc. Am. B 30, 2869–2874 (2013).
[CrossRef]

H. Shen, G. Lu, T. Zhang, J. Liu, Y. He, Y. Wang, and Q. Gong, “Molecule fluorescence modified by a slit-based nanoantenna with dual gratings,” J. Opt. Soc. Am. B 30, 2420–2426 (2013).
[CrossRef]

P. Li and E. T. Yu, “Large-area omnidirectional antireflection coating on low-index materials,” J. Opt. Soc. Am. B 30, 2584–2588 (2013).
[CrossRef]

L. G. Yang, C. H. Yeh, C. Y. Wong, C. W. Chow, F. G. Tseng, and H. K. Tsang, “Stable and wavelength-tunable silicon-microring-resonator based erbium-doped fiber laser,” Opt. Express 21, 2869–2874 (2013).
[CrossRef]

C. R. Philips, J. S. Pelc, and M. M. Fejer, “Parametric processes in quasi-phase matching gratings with random duty cycle errors,” J. Opt. Soc. Am. B 30, 982–993 (2013).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

P. Kaspar, R. Kappeler, D. Erni, and H. Jackel, “Average light velocities in periodic media,” J. Opt. Soc. Am. B 30, 2849–2854 (2013).
[CrossRef]

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, T. Misawa, and B. Lee, “Feasibility of fiber-optic radiation sensor using Čerenkov effect for detecting thermal neutrons,” Opt. Express 21, 14573–14582 (2013).
[CrossRef]

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

2012 (5)

G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
[CrossRef]

G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
[CrossRef]

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[CrossRef]

2011 (3)

2010 (1)

2009 (3)

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2009).
[CrossRef]

X. Li, K. Xie, and H.-M. Jiang, “Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects,” Opt. Commun. 282, 4292–4295 (2009).
[CrossRef]

I. Chremmos and O. Schwelb, “Optimization, bandwidth and the effect of loss on the characteristics of the coupled ring reflector,” Opt. Commun. 282, 3712–3719 (2009).
[CrossRef]

2008 (3)

J. J. Saarinen and J. E. Sipe, “A Green function approach to surface optics in anisotropic media,” J. Mod. Opt. 55, 13–32 (2008).
[CrossRef]

C. Vazquez and O. Schwelb, “Tunable, narrow-band, grating-assisted microring reflectors,” Opt. Commun. 281, 4910–4916 (2008).
[CrossRef]

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

2003 (1)

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

Abolghasem, P.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

Ali, J.

Arbabi, A.

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2009).
[CrossRef]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Cai, H.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[CrossRef]

H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add–drop devices,” Opt. Lett. 35, 2855–2857 (2010).
[CrossRef]

Cheng, J.

Chow, C. W.

Chremmos, I.

I. Chremmos and O. Schwelb, “Optimization, bandwidth and the effect of loss on the characteristics of the coupled ring reflector,” Opt. Commun. 282, 3712–3719 (2009).
[CrossRef]

de Ridder, R. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Dijkstra, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Du, G.

G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
[CrossRef]

Du, G. L.

G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

Erni, D.

Fejer, M. M.

Garmund, M.

Goddard, L. L.

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2009).
[CrossRef]

Gong, Q.

Grover, J. A.

Grüner-Nielsen, L.

Han, K.-T.

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

Hao, C.

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

He, Y.

Helmy, A. S.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

Helt, L. G.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

Hoekstra, H. J. W. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Hollink, A. J. F.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Huang, X.

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

Ibanescu, M.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef]

Jackel, H.

Jakobsen, D.

Jalil, M. A.

Jang, K. W.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, T. Misawa, and B. Lee, “Feasibility of fiber-optic radiation sensor using Čerenkov effect for detecting thermal neutrons,” Opt. Express 21, 14573–14582 (2013).
[CrossRef]

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

Jeon, D.

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

Jespersen, K. G.

Jiang, H.-M.

X. Li, K. Xie, and H.-M. Jiang, “Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects,” Opt. Commun. 282, 4292–4295 (2009).
[CrossRef]

Joannopoulos, J. D.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef]

Johnson, S. G.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef]

Kang, D.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

Kang, Y. M.

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2009).
[CrossRef]

Kappeler, R.

Kaspar, P.

Kauppinen, L. J.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Lambeck, P. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Lee, B.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, T. Misawa, and B. Lee, “Feasibility of fiber-optic radiation sensor using Čerenkov effect for detecting thermal neutrons,” Opt. Express 21, 14573–14582 (2013).
[CrossRef]

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

Lee, J.

Lee, J. H.

J. Cheng, J. H. Lee, K. Wang, C. Xu, K. G. Jespersen, M. Garmund, L. Grüner-Nielsen, and D. Jakobsen, “Generation of Čerenkov radiation at 850 nm in higher-order-mode fiber,” Opt. Express 19, 8774–8780 (2011).
[CrossRef]

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Li, G.

G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
[CrossRef]

Li, G. Q.

G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
[CrossRef]

Li, P.

Li, T.

G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
[CrossRef]

Li, X.

G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
[CrossRef]

G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
[CrossRef]

X. Li, K. Xie, and H.-M. Jiang, “Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects,” Opt. Commun. 282, 4292–4295 (2009).
[CrossRef]

Liu, J.

Liu, X.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Lu, B.

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

Lu, G.

Lu, Y.

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

Luo, C.

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef]

Misawa, T.

Moon, J.

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

Orozco, L. A.

Pelc, J. S.

Pham, S. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Philips, C. R.

Pollnau, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Poon, A. W.

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[CrossRef]

H. Cai and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add–drop devices,” Opt. Lett. 35, 2855–2857 (2010).
[CrossRef]

Pyeon, C. H.

Rolston, S. L.

Saarinen, J. J.

J. J. Saarinen and J. E. Sipe, “A Green function approach to surface optics in anisotropic media,” J. Mod. Opt. 55, 13–32 (2008).
[CrossRef]

Sakai, J.

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Schwelb, O.

I. Chremmos and O. Schwelb, “Optimization, bandwidth and the effect of loss on the characteristics of the coupled ring reflector,” Opt. Commun. 282, 3712–3719 (2009).
[CrossRef]

C. Vazquez and O. Schwelb, “Tunable, narrow-band, grating-assisted microring reflectors,” Opt. Commun. 281, 4910–4916 (2008).
[CrossRef]

Shen, H.

Shin, S. H.

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, T. Misawa, and B. Lee, “Feasibility of fiber-optic radiation sensor using Čerenkov effect for detecting thermal neutrons,” Opt. Express 21, 14573–14582 (2013).
[CrossRef]

Sipe, J. E.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

J. J. Saarinen and J. E. Sipe, “A Green function approach to surface optics in anisotropic media,” J. Mod. Opt. 55, 13–32 (2008).
[CrossRef]

Suwanpayak, N.

Suzuki, Y.

Teeka, C.

Tsang, H. K.

Tseng, F. G.

van Howe, J.

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Vazquez, C.

C. Vazquez and O. Schwelb, “Tunable, narrow-band, grating-assisted microring reflectors,” Opt. Commun. 281, 4910–4916 (2008).
[CrossRef]

Wang, K.

Wang, Y.

Wong, C. Y.

Wu, B.

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

Xie, K.

X. Li, K. Xie, and H.-M. Jiang, “Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects,” Opt. Commun. 282, 4292–4295 (2009).
[CrossRef]

Xu, C.

J. Cheng, J. H. Lee, K. Wang, C. Xu, K. G. Jespersen, M. Garmund, L. Grüner-Nielsen, and D. Jakobsen, “Generation of Čerenkov radiation at 850 nm in higher-order-mode fiber,” Opt. Express 19, 8774–8780 (2011).
[CrossRef]

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

Yagi, T.

Yang, L. G.

Yao, J.

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

Yeh, C. H.

Yoo, W. J.

K. W. Jang, T. Yagi, C. H. Pyeon, W. J. Yoo, S. H. Shin, T. Misawa, and B. Lee, “Feasibility of fiber-optic radiation sensor using Čerenkov effect for detecting thermal neutrons,” Opt. Express 21, 14573–14582 (2013).
[CrossRef]

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

Yu, E. T.

Yu, Z.

G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
[CrossRef]

Yupapin, P. P.

Zhang, T.

Zhao, S.

G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
[CrossRef]

Zhao, S. Z.

G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
[CrossRef]

Zhukovsky, S. V.

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

J. H. Lee, J. van Howe, C. Xu, and X. Liu, “Soliton self-frequency shift: experimental demonstrations and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 713–723 (2008).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

B. Lee, K. W. Jang, W. J. Yoo, S. H. Shin, J. Moon, K.-T. Han, and D. Jeon, “Measurements of Čerenkov lights using optical fibers,” IEEE Trans. Nucl. Sci. 60, 932–936 (2013).
[CrossRef]

J. Mod. Opt. (1)

J. J. Saarinen and J. E. Sipe, “A Green function approach to surface optics in anisotropic media,” J. Mod. Opt. 55, 13–32 (2008).
[CrossRef]

J. Opt. Soc. Am. B (6)

Lab Chip (1)

H. Cai and A. W. Poon, “Optical trapping of microparticles using silicon nitride waveguide junctions and tapered-waveguide junctions on an optofluidic chip,” Lab Chip 12, 3803–3809 (2012).
[CrossRef]

Opt. Commun. (5)

Y. Lu, C. Hao, B. Lu, X. Huang, B. Wu, and J. Yao, “Transmission and group delay in a double microring resonator reflector,” Opt. Commun. 285, 4567–4570 (2012).
[CrossRef]

X. Li, K. Xie, and H.-M. Jiang, “Properties of defect modes in one-dimensional photonic crystals containing two nonlinear defects,” Opt. Commun. 282, 4292–4295 (2009).
[CrossRef]

C. Vazquez and O. Schwelb, “Tunable, narrow-band, grating-assisted microring reflectors,” Opt. Commun. 281, 4910–4916 (2008).
[CrossRef]

I. Chremmos and O. Schwelb, “Optimization, bandwidth and the effect of loss on the characteristics of the coupled ring reflector,” Opt. Commun. 282, 3712–3719 (2009).
[CrossRef]

S. V. Zhukovsky, L. G. Helt, D. Kang, P. Abolghasem, A. S. Helmy, and J. E. Sipe, “Analytical description of photonic waveguides with multilayer claddings: towards on-chip generation of entangled photons and Bell states,” Opt. Commun. 301–302, 127–140 (2013).
[CrossRef]

Opt. Express (3)

Opt. Laser Technol. (1)

G. Du, G. Li, S. Zhao, X. Li, and Z. Yu, “Theoretical analysis of the TE mode Čerenkov type second harmonic generation in ion-implanted X-cut lithium niobate channel waveguides,” Opt. Laser Technol. 44, 830–838 (2012).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

Y. M. Kang, A. Arbabi, and L. L. Goddard, “A microring resonator with an integrated Bragg grating: a compact replacement for a sampled grating distributed Bragg reflector,” Opt. Quantum Electron. 41, 689–697 (2009).
[CrossRef]

Optik (1)

G. L. Du, G. Q. Li, S. Z. Zhao, T. Li, and X. Li, “Theoretical analysis of electromagnetic field distribution and Čerenkov second harmonic generation conversion efficiency based on lithium niobate ion-implanted channel waveguide,” Optik 123, 896–900 (2012).
[CrossRef]

Phys. Rev. Lett. (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle grating: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett. 84, 4721–4724 (2000).
[CrossRef]

Science (2)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef]

C. Luo, M. Ibanescu, S. G. Johnson, and J. D. Joannopoulos, “Čerenkov radiation in photonic crystals,” Science 299, 368–371 (2003).
[CrossRef]

Sens. Actuators B (1)

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sens. Actuators B 174, 602–608 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram of transmission behaviors of light in nested NMR and gratings, where Λ=0.2μm (H=0.1μm for InP material, L=0.1μm for InGaAsP material), dD=0.2μm (D=GaAs material).

Fig. 2.
Fig. 2.

Shows the transmittance of the two-defect multilayer and uniform grating, where two optical tweezers are occurring in the two-defect multilayer.

Fig. 3.
Fig. 3.

Transfer function of transmission behavior of light of NMR.

Fig. 4.
Fig. 4.

Transmission behaviors of light pulses in the nested NMRs, where (a) is the E field of the input in the time domain; (b) is the intensity in the FD; (c)–(f) are intensities in the FD at positions 1, 2, 3, and 4, respectively; (g) is the E field of the output in time domain; and (h) is the intensity in the FD.

Fig. 5.
Fig. 5.

Output power of the output port of the transmission light pulse in the FD range, where (a) 112–156 THz and (b) 160–230 THz with frequency f=197.07THz, which is closest to a resonant mode of the nested NMR (see Fig. 4).

Fig. 6.
Fig. 6.

Output intensity detected in the FD at the points out1, out2, and out3 in Fig. 1. (Inset) Output intensity of nested NMR and gratings, which is in the range from 169 to 181 THz.

Fig. 7.
Fig. 7.

Relationship between normalized intensity output and input, where (a) out1, (b) out2, and (c) out3.

Fig. 8.
Fig. 8.

FFT results of two-defect modes, where (a) is the first and (b) is the second defect mode for two-defect gratings.

Metrics