Abstract

The bending performance of standard nanoplasmonic slot waveguides is substantially improved by reducing the leakage loss and reflection in a systematic way. The out-of-plane power leakage is suppressed by using square metallic patches above and below the bend. The in-plane power leakage is reduced by elimination of the asymmetry between the electrical length of the inner and outer corners of the bend. The unwanted reflection is decreased by changing the shape of the outer corner of the bend. The partial reflections caused by the indentations of the modified shape destructively interfere with each other and thereby decrease the unwanted back reflection.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  2. S. Hal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
    [CrossRef]
  4. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [CrossRef]
  6. H. A. Atwater, “The promise of plasmonics,” Scientific American 296(4), 56–63 (2007).
    [CrossRef]
  7. L. O. Diniz, F. D. Nunes, E. Marega, J. Weiner, and B.-H. V. Borges, “Metal–insulator–metal surface plasmon polariton waveguide filters with cascaded transverse cavities,” J. Lightwave Technol. 29, 714–720 (2011).
    [CrossRef]
  8. M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
    [CrossRef]
  9. A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
    [CrossRef]
  10. M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Lightwave Technol. 31, 1170–1177 (2013).
    [CrossRef]
  11. M. Khatir and N. Granpayeh, “An ultra compact and high speed magneto-optic surface plasmon switch,” J. Lightwave Technol. 31, 1045–1054 (2013).
    [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbessen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef]
  13. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
    [CrossRef]
  14. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
    [CrossRef]
  15. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Moreno-Martin, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
    [CrossRef]
  16. D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides,” Opt. Express 18, 16139–16145 (2010).
    [CrossRef]
  17. W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
    [CrossRef]
  18. W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
    [CrossRef]
  19. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102, (2005).
    [CrossRef]
  20. M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
    [CrossRef]
  21. M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
    [CrossRef]
  22. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
    [CrossRef]
  23. G. Veroni and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [CrossRef]
  24. D. F. P. Pile, D. K. Gramotnev, R. F. Oulton, and X. Zhang, “On long-range plasmonic modes in metallic gaps,” Opt. Express 15, 13669–13674 (2007).
    [CrossRef]
  25. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
    [CrossRef]
  26. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen,. “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14, 4494–4503 (2006).
    [CrossRef]
  27. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
    [CrossRef]
  28. Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
    [CrossRef]

2014

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

2013

M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
[CrossRef]

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
[CrossRef]

M. Khatir and N. Granpayeh, “An ultra compact and high speed magneto-optic surface plasmon switch,” J. Lightwave Technol. 31, 1045–1054 (2013).
[CrossRef]

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an electro-optic modulator based on a silicon-plasmonic hybrid phase shifter,” J. Lightwave Technol. 31, 1170–1177 (2013).
[CrossRef]

2012

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

2011

2010

D. R. Mason, D. K. Gramotnev, and K. S. Kim, “Wavelength-dependent transmission through sharp 90° bends in sub-wavelength metallic slot waveguides,” Opt. Express 18, 16139–16145 (2010).
[CrossRef]

W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

2008

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

2007

H. A. Atwater, “The promise of plasmonics,” Scientific American 296(4), 56–63 (2007).
[CrossRef]

S. Hal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
[CrossRef]

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal corners,” J. Opt. Soc. Am. B 24, 2333–2342 (2007).
[CrossRef]

D. F. P. Pile, D. K. Gramotnev, R. F. Oulton, and X. Zhang, “On long-range plasmonic modes in metallic gaps,” Opt. Express 15, 13669–13674 (2007).
[CrossRef]

G. Veroni and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[CrossRef]

2006

2005

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30, 1186–1188 (2005).
[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102, (2005).
[CrossRef]

Atwater, H. A.

H. A. Atwater, “The promise of plasmonics,” Scientific American 296(4), 56–63 (2007).
[CrossRef]

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Bahadori, M.

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
[CrossRef]

M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Borges, B.-H. V.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbessen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen,. “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14, 4494–4503 (2006).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Moreno-Martin, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447–3449 (2006).
[CrossRef]

Brongersma, M.

W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef]

Brongersma, M. L.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Cai, W.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef]

Catrysse, P. B.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen,. “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14, 4494–4503 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbessen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Diniz, L. O.

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen,. “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14, 4494–4503 (2006).
[CrossRef]

Ebbessen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbessen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Eshaghian, A.

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
[CrossRef]

M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
[CrossRef]

Fan, S.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef]

G. Veroni and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102, (2005).
[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[CrossRef]

Fard, A. P.

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Forsberg, E.

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Fu, Y.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

Garcia-Vidal, F. J.

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Gong, Q.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

Gramotnev, D. K.

Granpayeh, N.

Hal, S.

S. Hal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Halas, N.

S. Hal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Han, Z.

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

He, S.

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

Hodaei, H.

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
[CrossRef]

M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
[CrossRef]

Hu, X.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

Jalaly, S.

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Khatir, M.

Khavasi, A.

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Kim, K. S.

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbessen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Lalute, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
[CrossRef]

Li, F.

Link, S.

S. Hal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

Lu, C.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

Lu, L.

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Marega, E.

Mason, D. R.

Mehrany, K.

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
[CrossRef]

M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
[CrossRef]

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Miri, M.

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Moreno, E.

Moreno-Martin, L.

Nunes, F. D.

Oulton, R. F.

Pile, D. F. P.

Qiu, M.

Rashidian, B.

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Rezaei, M.

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
[CrossRef]

M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
[CrossRef]

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

Rodrigo, S. G.

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Shin, W.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef]

Su, Y.

Veroni, G.

Veronis, G.

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[CrossRef]

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102, (2005).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen,. “Compact gradual bends for channel plasmon polaritons,” Opt. Express 14, 4494–4503 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbessen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Wang, T.

Weiner, J.

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Wu, J.

Xu, M.

Yan, M.

Yang, H.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

Yue, S.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

Zhang, X.

Zhou, L.

Adv. Mater.

W. Cai, W. Shin, S. Fan, and M. Brongersma, “Elements for plasmonic nanocircuits with three-dimensional slot waveguides,” Adv. Mater. 22, 5120–5124 (2010).
[CrossRef]

Appl. Phys. A

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Lalute, and T. W. Ebbesen, “Channelling surface plasmons,” Appl. Phys. A 89, 225–231 (2007).
[CrossRef]

Appl. Phys. Lett.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102, (2005).
[CrossRef]

IEEE J. Quantum Electron.

M. Bahadori, A. Eshaghian, M. Rezaei, H. Hodaei, and K. Mehrany, “Coupled transmission line model for planar metal-dielectric-metal plasmonic structures: inclusion of the first non-principal mode,” IEEE J. Quantum Electron. 49, 777–784 (2013).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Rezaei, S. Jalaly, M. Miri, A. Khavasi, A. P. Fard, K. Mehrany, and B. Rashidian, “A distributed circuit model for side coupled nanoplasmonic structures with metal-insulator-metal arrangement,” IEEE J. Sel. Top. Quantum Electron. 18, 1692–1699 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Han, E. Forsberg, and S. He, “Surface plasmon bragg gratings formed in metal-insulator-metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007).
[CrossRef]

M. Bahadori, A. Eshaghian, H. Hodaei, M. Rezaei, and K. Mehrany, “Analysis and design of optical demultiplexer based on arrayed plasmonic slot cavities: transmission line model,” IEEE Photon. Technol. Lett. 25, 784–786 (2013).
[CrossRef]

J. Appl. Phys.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nano Lett.

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[CrossRef]

W. Shin, W. Cai, P. B. Catrysse, G. Veronis, M. L. Brongersma, and S. Fan, “Broadband sharp 90-degree bends and t-splitters in plasmonic coaxial waveguides,” Nano Lett. 13, 4753–4758 (2013).
[CrossRef]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[CrossRef]

Nat. Photonics

S. Hal, S. Link, and N. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nature

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbessen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef]

Opt. Commun.

A. Eshaghian, M. Bahadori, M. Rezaei, A. Khavasi, H. Hodaei, and K. Mehrany, “Multi-conductor transmission line networks in analysis of side-coupled metal–insulator–metal plasmonic structures,” Opt. Commun. 313, 375–381 (2014).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Today

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008).
[CrossRef]

Scientific American

H. A. Atwater, “The promise of plasmonics,” Scientific American 296(4), 56–63 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of a sharply bent nanoplasmonic slot waveguide.

Fig. 2.
Fig. 2.

Transmission (solid line), reflection (dashed), bending loss (dotted), and Ohmic dissipation (dashed–dotted) of the structure in Fig. 1, when w=80nm and h=100nm.

Fig. 3.
Fig. 3.

y component of the normalized power flow over an square area of 500nm×500nm in the bent structure of Fig. 1, when w=80nm, h=100nm, and λ0=850nm.

Fig. 4.
Fig. 4.

Schematic of the proposed structure for reduction of the out-of-plane leakage.

Fig. 5.
Fig. 5.

x component of the magnetic field of the fundamental mode of the nanoplasmonic slot waveguide (a) without patches, (b) with patches at hp=60nm, and (c) with patches at hp=220nm.

Fig. 6.
Fig. 6.

Transmission (solid line), reflection (dashed), and overall loss (dotted) of the structure in Fig. 4 when w=80nm and h=100nm.

Fig. 7.
Fig. 7.

(a) First type pillar defect. (b) Transmission (solid line), reflection (dashed), and the overall loss (dotted) of the structure with w1=w/2, and d=40nm.

Fig. 8.
Fig. 8.

(a) Second type pillar defect. (b) Transmission (solid line), reflection (dashed), and overall loss (dotted) of sharp bend with w1=w/2, d=40nm, and w2=w/4.

Fig. 9.
Fig. 9.

(a) Third type pillar defect. (b) Transmission (solid line), reflection (dashed), and the overall loss (dotted) of sharp bend with w1=w/2, d=40nm, w2=w/4, and l=80nm.

Fig. 10.
Fig. 10.

y component of the magnetic field when the fundamental mode is passing through the structure with metallic patches and (a) no pillar defect, (b) first type pillar defect, (c) second type pillar defect, and (d) third type pillar defect.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

εm(ω)=εωp2ω(ωiγ),
Δϕ=βw×ΔL=2πΔLλw,
2lk0N+Rii+RiiiRi±π,

Metrics