Abstract

A compact dichroic surface plasmon polariton (SPP) splitting scheme composed of two cascaded subgratings of different dimensions is proposed and investigated. The normal incident photons illuminated on the dichroic splitting structure are converted to surface plasmons traveling to the left or right depending on the wavelength. The operation principle is clarified and a coupled-mode model is developed to facilitate structure design. The generated SPPs propagating to the left and right directions on the metal surface can be manipulated nearly independently by altering the left and right subgrating, respectively. Proof-of-principle demonstrations show that a remarkable property of high splitting ratios is achieved with 43.0 dB at wavelength 1310 nm (left:right power contrast) and 35.7 dB at wavelength 1550 nm (right:left power contrast). The proposed splitting concept has general applicability across other operating wavelengths, such as the visible and near-infrared range.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  3. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
    [CrossRef]
  4. J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97, 041113 (2010).
    [CrossRef]
  5. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
    [CrossRef]
  6. S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
    [CrossRef]
  7. J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19, 26463–26469 (2011).
    [CrossRef]
  8. T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
    [CrossRef]
  9. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
    [CrossRef]
  10. H. Caglayan and E. Ozbay, “Surface wave splitter based on metallic gratings with sub-wavelength aperture,” Opt. Express 16, 19091–19096 (2008).
    [CrossRef]
  11. Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
    [CrossRef]
  12. J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
    [CrossRef]
  13. X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
    [CrossRef]
  14. X. Lin, J. Yan, Y. Zheng, L. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9594–9599 (2011).
    [CrossRef]
  15. A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
    [CrossRef]
  16. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters or spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
    [CrossRef]
  17. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  18. G. Li, F. Xiao, K. Li, K. Alameh, and A. Xu, “Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations,” J. Lightwave Technol. 30, 2405–2414 (2012).
    [CrossRef]
  19. G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
    [CrossRef]
  20. K. Li, G. Li, F. Xiao, F. Lu, Z. Wang, and A. Xu, “Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency,” Opt. Express 20, 18545–18554 (2012).
    [CrossRef]
  21. K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
    [CrossRef]
  22. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
    [CrossRef]
  23. A. Y. Nikitin, F. J. G. Vidal, and L. M. Moreno, “Intercoupling of freespace radiation to s-polarized confined modes via nanocavities,” Appl. Phys. Lett. 94, 063119 (2009).
    [CrossRef]
  24. F. Lu, G. Li, F. Xiao, and A. Xu, “Compact bidirectional polarization splitting antenna,” IEEE Photon. J. 4, 1744–1751 (2012).
    [CrossRef]
  25. L. Cai, G. Li, F. Xiao, Z. Wang, and A. Xu, “Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence,” Opt. Express 18, 19495–19503 (2010).
    [CrossRef]
  26. G. Li and A. Xu, “A novel type of hybrid plasmonic waveguide with low-loss and high confinement,” in The Optical Fiber Communication Conference and Exposition (OFC/NFOEC) (Optical Society of America, 2012).

2013 (2)

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[CrossRef]

2012 (3)

2011 (5)

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
[CrossRef]

X. Lin, J. Yan, Y. Zheng, L. Wu, and S. Lan, “Bistable switching in the lossy side-coupled plasmonic waveguide-cavity structures,” Opt. Express 19, 9594–9599 (2011).
[CrossRef]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19, 26463–26469 (2011).
[CrossRef]

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef]

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

2010 (3)

J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97, 041113 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

L. Cai, G. Li, F. Xiao, Z. Wang, and A. Xu, “Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence,” Opt. Express 18, 19495–19503 (2010).
[CrossRef]

2009 (3)

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

A. Y. Nikitin, F. J. G. Vidal, and L. M. Moreno, “Intercoupling of freespace radiation to s-polarized confined modes via nanocavities,” Appl. Phys. Lett. 94, 063119 (2009).
[CrossRef]

2008 (3)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters or spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

H. Caglayan and E. Ozbay, “Surface wave splitter based on metallic gratings with sub-wavelength aperture,” Opt. Express 16, 19091–19096 (2008).
[CrossRef]

2007 (3)

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

2001 (1)

Afshinmanesh, F.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef]

Alameh, K.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[CrossRef]

G. Li, F. Xiao, K. Li, K. Alameh, and A. Xu, “Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations,” J. Lightwave Technol. 30, 2405–2414 (2012).
[CrossRef]

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
[CrossRef]

Aussenegg, F. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Baron, A.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

Bartal, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Bartoli, F. J.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Brongersma, M. L.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef]

Byeon, C. C.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Caglayan, H.

Cai, L.

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
[CrossRef]

L. Cai, G. Li, F. Xiao, Z. Wang, and A. Xu, “Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence,” Opt. Express 18, 19495–19503 (2010).
[CrossRef]

Cai, W.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef]

Cao, Q.

Chen, J.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19, 26463–26469 (2011).
[CrossRef]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97, 041113 (2010).
[CrossRef]

Chen, L.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Choi, S. B.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Dereux, A.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Devaux, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Ding, Y. J.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Drezet, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Du, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Ebbesen, T. W.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters or spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Fu, Z.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Gan, D.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Gan, Q.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

García-Vidal, F. J.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Genet, C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters or spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Gong, Q.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19, 26463–26469 (2011).
[CrossRef]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97, 041113 (2010).
[CrossRef]

González, M. U.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Guo, B.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Hohenau, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Hugonin, J. P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[CrossRef]

Jeong, M. S.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Jeong, Y. K.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Kang, J. H.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Kim, D. S.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Koller, D.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Krenn, J. R.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Lalanne, P.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “Use of grating theories in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001).
[CrossRef]

Lan, S.

Laux, E.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters or spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Lei, M.

Leitner, A.

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Lerosey, G.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Li, G.

G. Li, F. Xiao, K. Li, K. Alameh, and A. Xu, “Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations,” J. Lightwave Technol. 30, 2405–2414 (2012).
[CrossRef]

K. Li, G. Li, F. Xiao, F. Lu, Z. Wang, and A. Xu, “Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency,” Opt. Express 20, 18545–18554 (2012).
[CrossRef]

F. Lu, G. Li, F. Xiao, and A. Xu, “Compact bidirectional polarization splitting antenna,” IEEE Photon. J. 4, 1744–1751 (2012).
[CrossRef]

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
[CrossRef]

L. Cai, G. Li, F. Xiao, Z. Wang, and A. Xu, “Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence,” Opt. Express 18, 19495–19503 (2010).
[CrossRef]

G. Li and A. Xu, “A novel type of hybrid plasmonic waveguide with low-loss and high confinement,” in The Optical Fiber Communication Conference and Exposition (OFC/NFOEC) (Optical Society of America, 2012).

Li, K.

Li, Z.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19, 26463–26469 (2011).
[CrossRef]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97, 041113 (2010).
[CrossRef]

Liao, H.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

Lin, X.

Liu, J. S. Q.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef]

López-Tejeira, F.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Lu, F.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[CrossRef]

F. Lu, G. Li, F. Xiao, and A. Xu, “Compact bidirectional polarization splitting antenna,” IEEE Photon. J. 4, 1744–1751 (2012).
[CrossRef]

K. Li, G. Li, F. Xiao, F. Lu, Z. Wang, and A. Xu, “Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency,” Opt. Express 20, 18545–18554 (2012).
[CrossRef]

Luo, X.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Martín-Moreno, L.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Matheu, P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Moreno, L. M.

A. Y. Nikitin, F. J. G. Vidal, and L. M. Moreno, “Intercoupling of freespace radiation to s-polarized confined modes via nanocavities,” Appl. Phys. Lett. 94, 063119 (2009).
[CrossRef]

Nikitin, A. Y.

A. Y. Nikitin, F. J. G. Vidal, and L. M. Moreno, “Intercoupling of freespace radiation to s-polarized confined modes via nanocavities,” Appl. Phys. Lett. 94, 063119 (2009).
[CrossRef]

Ozbay, E.

Pala, R. A.

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Park, D. J.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Park, Q. H.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Pile, D. F. P.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Radko, I. P.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Rodier, J. C.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

Rodrigo, S. G.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Rousseau, E.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

Silberstein, E.

Skauli, T.

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters or spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

Song, G.

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

Vidal, F. J. G.

A. Y. Nikitin, F. J. G. Vidal, and L. M. Moreno, “Intercoupling of freespace radiation to s-polarized confined modes via nanocavities,” Appl. Phys. Lett. 94, 063119 (2009).
[CrossRef]

Wang, C.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Wang, Z.

Weeber, J. C.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Wu, L.

Xiao, F.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[CrossRef]

F. Lu, G. Li, F. Xiao, and A. Xu, “Compact bidirectional polarization splitting antenna,” IEEE Photon. J. 4, 1744–1751 (2012).
[CrossRef]

K. Li, G. Li, F. Xiao, F. Lu, Z. Wang, and A. Xu, “Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency,” Opt. Express 20, 18545–18554 (2012).
[CrossRef]

G. Li, F. Xiao, K. Li, K. Alameh, and A. Xu, “Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations,” J. Lightwave Technol. 30, 2405–2414 (2012).
[CrossRef]

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
[CrossRef]

L. Cai, G. Li, F. Xiao, Z. Wang, and A. Xu, “Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence,” Opt. Express 18, 19495–19503 (2010).
[CrossRef]

Xiao, J.

Xu, A.

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[CrossRef]

F. Lu, G. Li, F. Xiao, and A. Xu, “Compact bidirectional polarization splitting antenna,” IEEE Photon. J. 4, 1744–1751 (2012).
[CrossRef]

G. Li, F. Xiao, K. Li, K. Alameh, and A. Xu, “Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations,” J. Lightwave Technol. 30, 2405–2414 (2012).
[CrossRef]

K. Li, G. Li, F. Xiao, F. Lu, Z. Wang, and A. Xu, “Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency,” Opt. Express 20, 18545–18554 (2012).
[CrossRef]

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
[CrossRef]

L. Cai, G. Li, F. Xiao, Z. Wang, and A. Xu, “Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence,” Opt. Express 18, 19495–19503 (2010).
[CrossRef]

G. Li and A. Xu, “A novel type of hybrid plasmonic waveguide with low-loss and high confinement,” in The Optical Fiber Communication Conference and Exposition (OFC/NFOEC) (Optical Society of America, 2012).

Xu, T.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Yan, J.

Yue, S.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

J. Chen, Z. Li, M. Lei, S. Yue, J. Xiao, and Q. Gong, “Broadband unidirectional generation of surface plasmon polaritons with dielectric-film-coated asymmetric single-slit,” Opt. Express 19, 26463–26469 (2011).
[CrossRef]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97, 041113 (2010).
[CrossRef]

Yun, Y. C.

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Zhang, X.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

Zhao, Y.

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

Zheng, Y.

Appl. Phys. Lett. (6)

J. Chen, Z. Li, S. Yue, and Q. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97, 041113 (2010).
[CrossRef]

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102, 091110 (2013).
[CrossRef]

T. Xu, Y. Zhao, D. Gan, C. Wang, C. Du, and X. Luo, “Directional excitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett. 92, 101501 (2008).
[CrossRef]

S. B. Choi, D. J. Park, Y. K. Jeong, Y. C. Yun, M. S. Jeong, C. C. Byeon, J. H. Kang, Q. H. Park, and D. S. Kim, “Directional control of surface plasmon polariton waves propagating through an asymmetric Bragg resonator,” Appl. Phys. Lett. 94, 063115 (2009).
[CrossRef]

Q. Gan, B. Guo, G. Song, L. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90, 161130 (2007).
[CrossRef]

A. Y. Nikitin, F. J. G. Vidal, and L. M. Moreno, “Intercoupling of freespace radiation to s-polarized confined modes via nanocavities,” Appl. Phys. Lett. 94, 063119 (2009).
[CrossRef]

IEEE Photon. J. (1)

F. Lu, G. Li, F. Xiao, and A. Xu, “Compact bidirectional polarization splitting antenna,” IEEE Photon. J. 4, 1744–1751 (2012).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

Nano Lett. (3)

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11, 4207–4212 (2011).
[CrossRef]

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009).
[CrossRef]

A. Drezet, D. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Plasmonic crystal demultiplexer and multiports,” Nano Lett. 7, 1697–1700 (2007).
[CrossRef]

Nat. Commun. (1)

J. S. Q. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat. Commun. 2, 525 (2011).
[CrossRef]

Nat. Photonics (2)

E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmonic photon sorters or spectral and polarimetric imaging,” Nat. Photonics 2, 161–164 (2008).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Nat. Phys. (1)

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3, 324–328 (2007).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

New J. Phys. (2)

G. Li, F. Xiao, L. Cai, K. Alameh, and A. Xu, “Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition,” New J. Phys. 13, 073045 (2011).
[CrossRef]

K. Li, F. Xiao, F. Lu, K. Alameh, and A. Xu, “Unidirectional coupling of surface plasmons with ultra-broadband and wide-angle efficiency: potential applications in sensing,” New J. Phys. 15, 113040 (2013).
[CrossRef]

Opt. Express (5)

Other (2)

G. Li and A. Xu, “A novel type of hybrid plasmonic waveguide with low-loss and high confinement,” in The Optical Fiber Communication Conference and Exposition (OFC/NFOEC) (Optical Society of America, 2012).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the proposed plasmonic dichroic splitter consisting of two cascaded subgratings of different dimensions. The cascaded-grating structure launches SPPs preferentially to the left or right depending on the wavelength of the incident free-space beam.

Fig. 2.
Fig. 2.

Schematic of the model for constructive interference between the SPPs propagating in the desired directions.

Fig. 3.
Fig. 3.

Calculated generation cross section (σ) and transmission (T) of the (a)–(c) left and (d)–(f) right subgratings at different target wavelengths (1310 and 1550 nm) as functions of indentation width w and depth h. The superscript L (or R) means the left (or right) subgrating and the subscript represents the operating wavelength. The calculations are performed with pL=988nm, pR=1236nm, and NL=NR=8.

Fig. 4.
Fig. 4.

(a) Splitting ratio versus wavelength. (b) The scattered magnetic field distribution |Hx| for the incident wavelengths at 1310, 1400, and 1550 nm calculated by finite element method (FEM). The white lines outline the structure.

Fig. 5.
Fig. 5.

Power flow and the magnetic field along the z axis under the normal incidence of light at (a) 1310 nm and (b) 1550 nm. The insets indicate the schematics of left-coupling and right-coupling from free-space light at 1310 and 1550 nm, respectively. The vertical magenta-dashed lines indicate the region of the cascaded grating.

Fig. 6.
Fig. 6.

Calculated generation cross section (σ) and transmission (T) of the (a)–(c) left and (d)–(f) right subgratings at different operating wavelengths (650 and 850 nm) as functions of indentation width w and depth h. The calculations are performed with pL=445nm, pR=660nm, hd=120nm, and NL=NR=8.

Fig. 7.
Fig. 7.

Splitting ratios as functions of wavelength. The insets show the corresponding optical field intensity distribution at (a) λ=650nm and (b) 850 nm by FEM.

Fig. 8.
Fig. 8.

Scattered magnetic field distribution |Hx| for the incident wavelengths at (a) 750 nm and (b) 850 nm by FEM.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

βN+=βN1++τN1uw1Nβ1++ρ1uβN11ρ1ρN1u2,
βN=w1Nβ1+τ1uβN1+ρN1uw1Nβ1+1ρ1ρN1u2,
ρN=ρ1+ρN1τ12u21ρ1ρN1u2,
τN=τ1τN1u1ρ1ρN1u2.
βN=β11+τ1ρN1u21τ1u.
arg(τ1)+k0Re(nspp)pL,R=2mπ,
pL=[2mπarg(τ1)]λ1/[2πRe(nspp,λ1)],
pR=[2mπarg(τ1)]λ2/[2πRe(nspp,λ2)].
arg(ρNR,λ1)+2k0Re(neff,λ1)d+arg(τNL,λ1)=2m1π,
arg(ρNL,λ2)+2k0Re(neff,λ2)d+arg(τNR,λ2)=2m2π,

Metrics