Abstract

An azimuthally polarized beam was generated in passively Q-switched Nd:GdVO4 lasers with a Cr4+:YAG saturable absorber. Based on the birefringence of the laser crystal inducing the different equivalent lengths for the ordinary and extraordinary rays, stable ordinary ray lasing can be achieved when the cavity configuration is operated around the edge of a stable cavity region. Because the laser is directly obtained from a general cavity without adding an intracavity element, the azimuthally polarized beam is the intrinsic lasing mode of the passively Q-switched laser system. The degree of polarization can be controlled up to 97.9%±0.7%, and the pulse width, repetition frequency, and peak power were 74.8 ns, 17.0 kHz, and 850 W at the pump power of 6.1 W, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [CrossRef]
  2. B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
    [CrossRef]
  3. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
    [CrossRef]
  4. M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
    [CrossRef]
  5. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Generating radially polarized beams interferometrically,” Appl. Opt. 29, 2234–2239 (1990).
    [CrossRef]
  6. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
    [CrossRef]
  7. D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
    [CrossRef]
  8. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd: YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
    [CrossRef]
  9. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
    [CrossRef]
  10. J.-F. Bisson, J. Li, K. Ueda, and Yu. Senatsky, “Radially polarized ring and arc beams of a neodymium laser with an intra-cavity axicon,” Opt. Express 14, 3304–3311 (2006).
    [CrossRef]
  11. K.-C. Chang, T. Lin, and M.-D. Wei, “Generation of azimuthally and radially polarized off-axis beams with an intracavity large-apex-angle axicon,” Opt. Express, 21, 16035–16042 (2013).
    [CrossRef]
  12. I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003).
    [CrossRef]
  13. A. Ito, Y. Kozawa, and S. Sato, “Selective oscillation of radially and azimuthally polarized laser beam induced by thermal birefringence and lensing,” J. Opt. Soc. Am. B 26, 708–712 (2009).
    [CrossRef]
  14. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, “Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes,” Appl. Opt. 46, 3304–3310 (2007).
    [CrossRef]
  15. M.-D. Wei, Y.-S. Lai, and K.-C. Chang, “Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser,” Opt. Lett. 38, 2443–2445 (2013).
    [CrossRef]
  16. F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34, 2030–2032 (2009).
    [CrossRef]
  17. H. Jianhong, D. Jing, C. Yongge, W. Wen, Z. Hui, L. Jinhui, S. Fei, G. Yan, D. Shutao, and L. Wenxiong, “Passively mode-locked radially polarized laser based on ceramic Nd:YAG rod,” Opt. Express 19, 2120–2125 (2011).
    [CrossRef]
  18. K. G. Xia, K.-I. Ueda, and J. L. Li, “Radially polarized, actively Q-switched, and end-pumped Nd:YAG laser,” Appl. Phys. B 107, 47–51 (2012).
    [CrossRef]
  19. J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686–2688 (2008).
    [CrossRef]
  20. J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
    [CrossRef]
  21. D. Lin, K. Xia, R. Li, X. Li, G. Li, K. Ueda, and J. Li, “Radially polarized and passively Q-switched fiber laser,” Opt. Lett. 35, 3574–3576 (2010).
    [CrossRef]
  22. Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4–Cr4+:YAG laser,” IEEE J. Quantum Electron. 37, 580–586 (2001).
    [CrossRef]
  23. A. E. Siegman, Lasers (University Science, 1986).
  24. K.-G. Hong and M.-D. Wei, “Dynamical behavior and phase locking in a passively Q-switched Nd:YVO4 laser with pump modulation,” J. Opt. 15, 085201 (2013).
    [CrossRef]
  25. J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
    [CrossRef]

2013 (3)

2012 (1)

K. G. Xia, K.-I. Ueda, and J. L. Li, “Radially polarized, actively Q-switched, and end-pumped Nd:YAG laser,” Appl. Phys. B 107, 47–51 (2012).
[CrossRef]

2011 (1)

2010 (1)

2009 (4)

2008 (1)

2007 (2)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, S. Jackel, and N. Davidson, “Birefringence-induced bifocusing for selection of radially or azimuthally polarized laser modes,” Appl. Opt. 46, 3304–3310 (2007).
[CrossRef]

2006 (2)

2005 (1)

2003 (1)

2001 (1)

Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4–Cr4+:YAG laser,” IEEE J. Quantum Electron. 37, 580–586 (2001).
[CrossRef]

1997 (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

1996 (1)

1995 (1)

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

1994 (1)

1990 (1)

1972 (1)

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Bisson, J.-F.

Chang, K.-C.

Chen, W.-B.

J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
[CrossRef]

Chen, Y. F.

Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4–Cr4+:YAG laser,” IEEE J. Quantum Electron. 37, 580–586 (2001).
[CrossRef]

Davidson, N.

Degnan, J. J.

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

Enderli, F.

Esarey, E.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Fei, S.

Feurer, T.

F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34, 2030–2032 (2009).
[CrossRef]

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Ford, D. H.

Hafizi, B.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Harada, Y.

Hong, K.-G.

K.-G. Hong and M.-D. Wei, “Dynamical behavior and phase locking in a passively Q-switched Nd:YVO4 laser with pump modulation,” J. Opt. 15, 085201 (2013).
[CrossRef]

Hui, Z.

Ito, A.

Jackel, S.

Jianhong, H.

Jing, D.

Jinhui, L.

Kimura, W. D.

Kozawa, Y.

Lai, Y.-S.

Li, G.

Li, J.

Li, J. L.

K. G. Xia, K.-I. Ueda, and J. L. Li, “Radially polarized, actively Q-switched, and end-pumped Nd:YAG laser,” Appl. Phys. B 107, 47–51 (2012).
[CrossRef]

Li, J.-L.

J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686–2688 (2008).
[CrossRef]

Li, R.

Li, X.

Lin, D.

D. Lin, K. Xia, R. Li, X. Li, G. Li, K. Ueda, and J. Li, “Radially polarized and passively Q-switched fiber laser,” Opt. Lett. 35, 3574–3576 (2010).
[CrossRef]

J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
[CrossRef]

Lin, T.

Lumer, Y.

Machavariani, G.

Meier, M.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Meir, A.

Moshe, I.

Musha, M.

J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686–2688 (2008).
[CrossRef]

Pohl, D.

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

Romano, V.

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Sato, S.

Schadt, M.

Senatsky, Yu.

Shirakawa, A.

J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686–2688 (2008).
[CrossRef]

Shutao, D.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Sprangle, P.

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Stalder, M.

Tidwell, S. C.

Tsai, S. W.

Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4–Cr4+:YAG laser,” IEEE J. Quantum Electron. 37, 580–586 (2001).
[CrossRef]

Ueda, K.

Ueda, K.-I.

K. G. Xia, K.-I. Ueda, and J. L. Li, “Radially polarized, actively Q-switched, and end-pumped Nd:YAG laser,” Appl. Phys. B 107, 47–51 (2012).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686–2688 (2008).
[CrossRef]

Waseda, Y.

Wei, M.-D.

Wen, W.

Wenxiong, L.

Xia, K.

Xia, K. G.

K. G. Xia, K.-I. Ueda, and J. L. Li, “Radially polarized, actively Q-switched, and end-pumped Nd:YAG laser,” Appl. Phys. B 107, 47–51 (2012).
[CrossRef]

Yan, G.

Yonezawa, K.

Yongge, C.

Zhan, Q.

Zhong, L.-X.

J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686–2688 (2008).
[CrossRef]

Adv. Opt. Photon. (1)

Appl. Opt. (2)

Appl. Phys. A (1)

M. Meier, V. Romano, and T. Feurer, “Material processing with pulsed radially and azimuthally polarized laser radiation,” Appl. Phys. A 86, 329–334 (2007).
[CrossRef]

Appl. Phys. B (1)

K. G. Xia, K.-I. Ueda, and J. L. Li, “Radially polarized, actively Q-switched, and end-pumped Nd:YAG laser,” Appl. Phys. B 107, 47–51 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

D. Pohl, “Operation of a ruby laser in purely transverse electric mode TE01,” Appl. Phys. Lett. 20, 266–267 (1972).
[CrossRef]

IEEE J. Quantum Electron. (2)

Y. F. Chen and S. W. Tsai, “Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO4–Cr4+:YAG laser,” IEEE J. Quantum Electron. 37, 580–586 (2001).
[CrossRef]

J. J. Degnan, “Optimization of passively Q-switched lasers,” IEEE J. Quantum Electron. 31, 1890–1901 (1995).
[CrossRef]

J. Opt. (1)

K.-G. Hong and M.-D. Wei, “Dynamical behavior and phase locking in a passively Q-switched Nd:YVO4 laser with pump modulation,” J. Opt. 15, 085201 (2013).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

J.-L. Li, D. Lin, L.-X. Zhong, K. Ueda, A. Shirakawa, M. Musha, and W.-B. Chen, “Passively Q-switched Nd:YAG ceramic microchip laser with azimuthally polarized output,” Laser Phys. Lett. 6, 711–714 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (9)

I. Moshe, S. Jackel, and A. Meir, “Production of radially or azimuthally polarized beams in solid-state lasers and the elimination of thermally induced birefringence effects,” Opt. Lett. 28, 807–809 (2003).
[CrossRef]

M.-D. Wei, Y.-S. Lai, and K.-C. Chang, “Generation of a radially polarized laser beam in a single microchip Nd:YVO4 laser,” Opt. Lett. 38, 2443–2445 (2013).
[CrossRef]

F. Enderli and T. Feurer, “Radially polarized mode-locked Nd:YAG laser,” Opt. Lett. 34, 2030–2032 (2009).
[CrossRef]

J.-L. Li, K.-I. Ueda, M. Musha, L.-X. Zhong, and A. Shirakawa, “Radially polarized and pulsed output from passively Q-switched Nd:YAG ceramic microchip laser,” Opt. Lett. 33, 2686–2688 (2008).
[CrossRef]

K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd: YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006).
[CrossRef]

Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005).
[CrossRef]

M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21, 1948–1950 (1996).
[CrossRef]

S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
[CrossRef]

D. Lin, K. Xia, R. Li, X. Li, G. Li, K. Ueda, and J. Li, “Radially polarized and passively Q-switched fiber laser,” Opt. Lett. 35, 3574–3576 (2010).
[CrossRef]

Phys. Rev. E (1)

B. Hafizi, E. Esarey, and P. Sprangle, “Laser-driven acceleration with Bessel beams,” Phys. Rev. E 55, 3539–3545 (1997).
[CrossRef]

Other (1)

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

(a) Three-element cavity configuration and (b) spot size as a function of z2 at z1=20cm was calculated by the ABCD law involving an e-ray (red-dashed line) and an o-ray (blue solid line).

Fig. 2.
Fig. 2.

(a) Stable region for a three-element cavity configuration. “AP” shows where the cavity configurations near the stable boundaries for the o-ray are unstable for the e-ray; “RP” shows where the cavity configurations are stable for the e-ray and unstable for the o-ray. (b) Δz2 as a function of z1. Δz2 shows the tolerant region of z2 where an azimuthally polarized beam is preferable.

Fig. 3.
Fig. 3.

Intracavity spot size at various intracavity positions with z1=20cm and z2=12.148cm. The setup and parameters are shown in the upper part of the figure. Points A and B correspond the actual central positions of the crystal and saturable absorber, respectively.

Fig. 4.
Fig. 4.

Average output power of the laser as a function of the pump power.

Fig. 5.
Fig. 5.

(a) Azimuthally polarized patterns at various polarized conditions. “N” is the original pattern without a polarizer, and the red arrow represents the direction of the polarization angle for all the figures. (b) Polarization direction versus the slit angle. Each data point was obtained by fitting the intensity as a function of the polarizer angle, as shown in the inset for a slit angle of 60°.

Fig. 6.
Fig. 6.

(a) Output pulse train and (b) pulse profile at a pump power of 6.1 W.

Fig. 7.
Fig. 7.

Repetition frequency and pulse width as a function of the pump power.

Fig. 8.
Fig. 8.

Radial polarized patterns at various polarization conditions.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1q=1Riλπw2,
q=Aq+BCq+D,

Metrics