Abstract

3D nano-crystallization has been investigated with a femtosecond laser beam in 33Li2O-33Nb2O5-34SiO2 glass by changing the pulse energy and polarization direction. Electron backscattered diffraction was used to characterize the size and the orientation of crystals in cross sections of laser tracks, while second harmonic generation was employed to investigate the nonlinear optical properties of laser lines macroscopically. We are the first, to the best of our knowledge, to reveal that crystals of nano-size were precipitated both at low pulse energy with laser polarization parallel to the laser motion direction and at high pulse energy in the perpendicular case, but they preferred to orientate perpendicularly to the written lines in the former case.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [CrossRef]
  2. B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express 1, 766–782 (2011).
    [CrossRef]
  3. B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joesph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16, 18354–18361 (2008).
    [CrossRef]
  4. M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36, 2161–2163 (2011).
    [CrossRef]
  5. W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
    [CrossRef]
  6. B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11, 1070–1079 (2003).
    [CrossRef]
  7. K. Miura, J. Qiu, T. Mitsuyu, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25, 408–410 (2000).
    [CrossRef]
  8. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, G. Stone, K. Miura, and K. Hirao, “Multilayer aberration correction for depth-independent three-dimensional crystal growth in glass by femtosecond laser heating,” J. Opt. Soc. Am. B 30, 1234–1240 (2013).
    [CrossRef]
  9. Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, “Space-selective precipitation of nonlinear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
    [CrossRef]
  10. Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
    [CrossRef]
  11. Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
    [CrossRef]
  12. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurement in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84, 245103 (2011).
    [CrossRef]
  13. D. I. H. Atkinson and P. W. Mcmillan, “Glass-ceramics with random and oriented microstructures—Part-2,” J. Mater. Sci. 11, 994–1002 (1976).
    [CrossRef]
  14. R. S. Weis and T. K. Gaylord, “Lithium niobate-summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [CrossRef]
  15. H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143, 280–284 (2007).
    [CrossRef]
  16. T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31, 315–319 (2008).
    [CrossRef]
  17. T. Honma, T. Komatsu, D. Zhao, and H. Jain, “Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning,” IOP Conf. Ser.: Mater. Sci. Eng. 1, 012006 (2009).
    [CrossRef]
  18. T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18, 8019–8024 (2010).
    [CrossRef]
  19. M. P. F. Graça, M. A. Valente, and M. G. Ferreira da Silva, “Electrical properties of lithium niobium silicate glasses,” J. Non-Cryst. Solids 325, 267–274 (2003).
    [CrossRef]
  20. M. Todorovic and L. Radonjic, “Lithium-niobate ferroelectric material obtained by glass crystallization,” Ceram. Int. 23, 55–60 (1997).
    [CrossRef]
  21. E. Prasad, M. Sayer, and H. M. Vyas, “Li+ conductivity in lithium niobate: silica glasses,” J. Non-Cryst. Solids 40, 119–134 (1980).
    [CrossRef]
  22. C. Fan, B. Poumellec, M. Lancry, X. He, H. Zeng, A. Erraji-Chahid, Q. Liu, and G. Chen, “3D photo-precipitation of oriented LiNbO3 crystals in silica based glass with femtosecond laser irradiation,” Opt. Lett. 37, 2955–2957 (2012).
    [CrossRef]
  23. H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
    [CrossRef]
  24. H. J. Scheel and P. Capper, Crystal Growth Technology: From Fundamentals and Simulation to Large-Scale Production (Wiley-VCH, 2008).
  25. D. R. Uhlmann and E. V. Uhlmann, “Crystal growth and melting in glass-forming systems: a view from 1992,” in Nucleation and Crystallization in Liquids and Glasses, M. C. Weinberg, ed., Vol. 30 of Ceramic Transitions (American Ceramic Society, 1993), p. 109.
  26. I. Gutzow, A. Dobreva, C. Rüssel, and B. Durschang, “Kinetics of vitrification under hydrostatic pressure and under tangential stress,” J. Non-Cryst. Solids 215, 313–319 (1997).
    [CrossRef]
  27. D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A 23, 3139–3151 (1981).
    [CrossRef]

2013 (1)

2012 (1)

2011 (4)

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

B. Poumellec, M. Lancry, A. Chahid-Erraji, and P. Kazansky, “Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters,” Opt. Mater. Express 1, 766–782 (2011).
[CrossRef]

M. Shimizu, M. Sakakura, S. Kanehira, M. Nishi, Y. Shimotsuma, K. Hirao, and K. Miura, “Formation mechanism of element distribution in glass under femtosecond laser irradiation,” Opt. Lett. 36, 2161–2163 (2011).
[CrossRef]

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurement in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84, 245103 (2011).
[CrossRef]

2010 (1)

2009 (1)

T. Honma, T. Komatsu, D. Zhao, and H. Jain, “Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning,” IOP Conf. Ser.: Mater. Sci. Eng. 1, 012006 (2009).
[CrossRef]

2008 (5)

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31, 315–319 (2008).
[CrossRef]

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[CrossRef]

B. Poumellec, M. Lancry, J. C. Poulin, and S. Ani-Joesph, “Non reciprocal writing and chirality in femtosecond laser irradiated silica,” Opt. Express 16, 18354–18361 (2008).
[CrossRef]

2007 (2)

H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143, 280–284 (2007).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[CrossRef]

2005 (1)

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, “Space-selective precipitation of nonlinear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

2003 (2)

B. Poumellec, L. Sudrie, M. Franco, B. Prade, and A. Mysyrowicz, “Femtosecond laser irradiation stress induced in pure silica,” Opt. Express 11, 1070–1079 (2003).
[CrossRef]

M. P. F. Graça, M. A. Valente, and M. G. Ferreira da Silva, “Electrical properties of lithium niobium silicate glasses,” J. Non-Cryst. Solids 325, 267–274 (2003).
[CrossRef]

2000 (1)

1997 (2)

M. Todorovic and L. Radonjic, “Lithium-niobate ferroelectric material obtained by glass crystallization,” Ceram. Int. 23, 55–60 (1997).
[CrossRef]

I. Gutzow, A. Dobreva, C. Rüssel, and B. Durschang, “Kinetics of vitrification under hydrostatic pressure and under tangential stress,” J. Non-Cryst. Solids 215, 313–319 (1997).
[CrossRef]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate-summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

1981 (1)

D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A 23, 3139–3151 (1981).
[CrossRef]

1980 (1)

E. Prasad, M. Sayer, and H. M. Vyas, “Li+ conductivity in lithium niobate: silica glasses,” J. Non-Cryst. Solids 40, 119–134 (1980).
[CrossRef]

1976 (1)

D. I. H. Atkinson and P. W. Mcmillan, “Glass-ceramics with random and oriented microstructures—Part-2,” J. Mater. Sci. 11, 994–1002 (1976).
[CrossRef]

Adamietz, F.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Ani-Joesph, S.

Araki, R.

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, “Space-selective precipitation of nonlinear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

Atkinson, D. I. H.

D. I. H. Atkinson and P. W. Mcmillan, “Glass-ceramics with random and oriented microstructures—Part-2,” J. Mater. Sci. 11, 994–1002 (1976).
[CrossRef]

Benino, Y.

T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31, 315–319 (2008).
[CrossRef]

H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143, 280–284 (2007).
[CrossRef]

Bethune, D.

D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A 23, 3139–3151 (1981).
[CrossRef]

Canning, J.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurement in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84, 245103 (2011).
[CrossRef]

Capper, P.

H. J. Scheel and P. Capper, Crystal Growth Technology: From Fundamentals and Simulation to Large-Scale Production (Wiley-VCH, 2008).

Chahid-Erraji, A.

Chen, G.

Dai, Y.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[CrossRef]

Dierolf, V.

Dobreva, A.

I. Gutzow, A. Dobreva, C. Rüssel, and B. Durschang, “Kinetics of vitrification under hydrostatic pressure and under tangential stress,” J. Non-Cryst. Solids 215, 313–319 (1997).
[CrossRef]

Durschang, B.

I. Gutzow, A. Dobreva, C. Rüssel, and B. Durschang, “Kinetics of vitrification under hydrostatic pressure and under tangential stress,” J. Non-Cryst. Solids 215, 313–319 (1997).
[CrossRef]

Dussauze, M.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Erraji-Chahid, A.

Fan, C.

Fargin, E.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Fargues, A.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Fedorov, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurement in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84, 245103 (2011).
[CrossRef]

Ferreira da Silva, M. G.

M. P. F. Graça, M. A. Valente, and M. G. Ferreira da Silva, “Electrical properties of lithium niobium silicate glasses,” J. Non-Cryst. Solids 325, 267–274 (2003).
[CrossRef]

Franco, M.

Fujita, K.

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, “Space-selective precipitation of nonlinear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate-summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Graça, M. P. F.

M. P. F. Graça, M. A. Valente, and M. G. Ferreira da Silva, “Electrical properties of lithium niobium silicate glasses,” J. Non-Cryst. Solids 325, 267–274 (2003).
[CrossRef]

Groothoff, N.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurement in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84, 245103 (2011).
[CrossRef]

Guizard, S.

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurement in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84, 245103 (2011).
[CrossRef]

Gutzow, I.

I. Gutzow, A. Dobreva, C. Rüssel, and B. Durschang, “Kinetics of vitrification under hydrostatic pressure and under tangential stress,” J. Non-Cryst. Solids 215, 313–319 (1997).
[CrossRef]

He, X.

Hirao, K.

Honma, T.

T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18, 8019–8024 (2010).
[CrossRef]

T. Honma, T. Komatsu, D. Zhao, and H. Jain, “Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning,” IOP Conf. Ser.: Mater. Sci. Eng. 1, 012006 (2009).
[CrossRef]

T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31, 315–319 (2008).
[CrossRef]

H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143, 280–284 (2007).
[CrossRef]

Jain, H.

Kamitsos, E.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Kanehira, S.

Kazansky, P.

Kazansky, P. G.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[CrossRef]

Komatsu, T.

T. Honma and T. Komatsu, “Patterning of two-dimensional planar lithium niobate architectures on glass surface by laser scanning,” Opt. Express 18, 8019–8024 (2010).
[CrossRef]

T. Honma, T. Komatsu, D. Zhao, and H. Jain, “Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning,” IOP Conf. Ser.: Mater. Sci. Eng. 1, 012006 (2009).
[CrossRef]

T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31, 315–319 (2008).
[CrossRef]

H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143, 280–284 (2007).
[CrossRef]

Koshiba, K.

T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31, 315–319 (2008).
[CrossRef]

Lancry, M.

Le Garrec, B.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Liu, Q.

Lotarev, S.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Lu, B.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[CrossRef]

Ma, H.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[CrossRef]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Mcmillan, P. W.

D. I. H. Atkinson and P. W. Mcmillan, “Glass-ceramics with random and oriented microstructures—Part-2,” J. Mater. Sci. 11, 994–1002 (1976).
[CrossRef]

Mitsuyu, T.

Miura, K.

Mountrichas, G.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Mysyrowicz, A.

Nishi, M.

Poulin, J. C.

Poumellec, B.

Prade, B.

Prasad, E.

E. Prasad, M. Sayer, and H. M. Vyas, “Li+ conductivity in lithium niobate: silica glasses,” J. Non-Cryst. Solids 40, 119–134 (1980).
[CrossRef]

Qiu, J.

Radonjic, L.

M. Todorovic and L. Radonjic, “Lithium-niobate ferroelectric material obtained by glass crystallization,” Ceram. Int. 23, 55–60 (1997).
[CrossRef]

Rodriguez, V.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Rüssel, C.

I. Gutzow, A. Dobreva, C. Rüssel, and B. Durschang, “Kinetics of vitrification under hydrostatic pressure and under tangential stress,” J. Non-Cryst. Solids 215, 313–319 (1997).
[CrossRef]

Sakakura, M.

Sayer, M.

E. Prasad, M. Sayer, and H. M. Vyas, “Li+ conductivity in lithium niobate: silica glasses,” J. Non-Cryst. Solids 40, 119–134 (1980).
[CrossRef]

Scheel, H. J.

H. J. Scheel and P. Capper, Crystal Growth Technology: From Fundamentals and Simulation to Large-Scale Production (Wiley-VCH, 2008).

Shimizu, M.

Shimotsuma, Y.

Sigaev, V.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Stone, A.

Stone, G.

Sudrie, L.

Sugita, H.

H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143, 280–284 (2007).
[CrossRef]

Svirko, Y. P.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[CrossRef]

Todorovic, M.

M. Todorovic and L. Radonjic, “Lithium-niobate ferroelectric material obtained by glass crystallization,” Ceram. Int. 23, 55–60 (1997).
[CrossRef]

Uhlmann, D. R.

D. R. Uhlmann and E. V. Uhlmann, “Crystal growth and melting in glass-forming systems: a view from 1992,” in Nucleation and Crystallization in Liquids and Glasses, M. C. Weinberg, ed., Vol. 30 of Ceramic Transitions (American Ceramic Society, 1993), p. 109.

Uhlmann, E. V.

D. R. Uhlmann and E. V. Uhlmann, “Crystal growth and melting in glass-forming systems: a view from 1992,” in Nucleation and Crystallization in Liquids and Glasses, M. C. Weinberg, ed., Vol. 30 of Ceramic Transitions (American Ceramic Society, 1993), p. 109.

Valente, M. A.

M. P. F. Graça, M. A. Valente, and M. G. Ferreira da Silva, “Electrical properties of lithium niobium silicate glasses,” J. Non-Cryst. Solids 325, 267–274 (2003).
[CrossRef]

Vigouroux, H.

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

Vyas, H. M.

E. Prasad, M. Sayer, and H. M. Vyas, “Li+ conductivity in lithium niobate: silica glasses,” J. Non-Cryst. Solids 40, 119–134 (1980).
[CrossRef]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate-summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Yang, W.

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[CrossRef]

Yonesaki, Y.

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, “Space-selective precipitation of nonlinear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

Yu, B.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[CrossRef]

Zeng, H.

Zhao, D.

T. Honma, T. Komatsu, D. Zhao, and H. Jain, “Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning,” IOP Conf. Ser.: Mater. Sci. Eng. 1, 012006 (2009).
[CrossRef]

Zhu, B.

Y. Dai, H. Ma, B. Lu, B. Yu, B. Zhu, and J. Qiu, “Femtosecond laser-induced oriented precipitation of Ba2TiGe2O8 crystals in glass,” Opt. Express 16, 3912–3917 (2008).
[CrossRef]

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[CrossRef]

Appl. Phys. A (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate-summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[CrossRef]

Ceram. Int. (1)

M. Todorovic and L. Radonjic, “Lithium-niobate ferroelectric material obtained by glass crystallization,” Ceram. Int. 23, 55–60 (1997).
[CrossRef]

Chem. Phys. Lett. (1)

Y. Dai, B. Zhu, J. Qiu, H. Ma, B. Lu, and B. Yu, “Space-selective precipitation of functional crystals in glass by using a high repetition rate femtosecond laser,” Chem. Phys. Lett. 443, 253–257 (2007).
[CrossRef]

IOP Conf. Ser.: Mater. Sci. Eng. (1)

T. Honma, T. Komatsu, D. Zhao, and H. Jain, “Writing of rare-earth ion doped lithium niobate line patterns in glass by laser scanning,” IOP Conf. Ser.: Mater. Sci. Eng. 1, 012006 (2009).
[CrossRef]

J. Am. Ceram. Soc. (1)

H. Vigouroux, E. Fargin, A. Fargues, B. Le Garrec, M. Dussauze, V. Rodriguez, F. Adamietz, G. Mountrichas, E. Kamitsos, S. Lotarev, and V. Sigaev, “Crystallization and second harmonic generation of lithium niobium silicate glass ceramics,” J. Am. Ceram. Soc. 94, 2080–2086 (2011).
[CrossRef]

J. Mater. Sci. (1)

D. I. H. Atkinson and P. W. Mcmillan, “Glass-ceramics with random and oriented microstructures—Part-2,” J. Mater. Sci. 11, 994–1002 (1976).
[CrossRef]

J. Non-Cryst. Solids (4)

Y. Yonesaki, R. Araki, K. Miura, K. Fujita, and K. Hirao, “Space-selective precipitation of nonlinear optical crystals inside silicate glasses using near-infrared femtosecond laser,” J. Non-Cryst. Solids 351, 885–892 (2005).
[CrossRef]

I. Gutzow, A. Dobreva, C. Rüssel, and B. Durschang, “Kinetics of vitrification under hydrostatic pressure and under tangential stress,” J. Non-Cryst. Solids 215, 313–319 (1997).
[CrossRef]

E. Prasad, M. Sayer, and H. M. Vyas, “Li+ conductivity in lithium niobate: silica glasses,” J. Non-Cryst. Solids 40, 119–134 (1980).
[CrossRef]

M. P. F. Graça, M. A. Valente, and M. G. Ferreira da Silva, “Electrical properties of lithium niobium silicate glasses,” J. Non-Cryst. Solids 325, 267–274 (2003).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nat. Photonics (2)

W. Yang, P. G. Kazansky, and Y. P. Svirko, “Non-reciprocal ultrafast laser writing,” Nat. Photonics 2, 99–104 (2008).
[CrossRef]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. (1)

T. Honma, K. Koshiba, Y. Benino, and T. Komatsu, “Writing of crystal lines and its optical properties of rare-earth ion (Er3+ and Sm3+) doped lithium niobate crystal on glass surface formed by laser irradiation,” Opt. Mater. 31, 315–319 (2008).
[CrossRef]

Opt. Mater. Express (1)

Phys. Rev. A (1)

D. Bethune, “Optical second-harmonic generation in atomic vapors with focused beams,” Phys. Rev. A 23, 3139–3151 (1981).
[CrossRef]

Phys. Rev. B (1)

M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, and J. Canning, “Time-resolved plasma measurement in Ge-doped silica exposed to infrared femtosecond laser,” Phys. Rev. B 84, 245103 (2011).
[CrossRef]

Solid State Commun. (1)

H. Sugita, T. Honma, Y. Benino, and T. Komatsu, “Formation of LiNbO3 crystals at the surface of TeO2-based glass by YAG laser-induced crystallization,” Solid State Commun. 143, 280–284 (2007).
[CrossRef]

Other (2)

H. J. Scheel and P. Capper, Crystal Growth Technology: From Fundamentals and Simulation to Large-Scale Production (Wiley-VCH, 2008).

D. R. Uhlmann and E. V. Uhlmann, “Crystal growth and melting in glass-forming systems: a view from 1992,” in Nucleation and Crystallization in Liquids and Glasses, M. C. Weinberg, ed., Vol. 30 of Ceramic Transitions (American Ceramic Society, 1993), p. 109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Pulse energy versus repetition rate with different processing thresholds of fs laser interaction with LNS glass. Other laser parameters: OB, optical breakdown; CF, crystallization formation. Dots in the graph indicate the experiments were carried out in this work.

Fig. 2.
Fig. 2.

Illustrated scheme of laser irradiation: laser beam propagation, z axis; writing direction, x axis; polarization e, x axis or y axis.

Fig. 3.
Fig. 3.

(a) SEM micrograph of etched cross section of written line with pulse energy 1.5 μJ [22], EBSD scan image coding the crystal orientation (b) along the x axis and (c) along the y axis. For example, points A and B (in point and dashed circle) are related to the red (0001) and blue (1-210) colors in (b) and to green (0-110) and red (0001) in (c), respectively.

Fig. 4.
Fig. 4.

(a) EBSD scan images of written line cross sections irradiated at 2.0–0.6 μJ (with polarization parallel to the laser motion direction) coding the crystal orientation along x. (b) EBSD images of written line cross sections irradiated at 2.0 μJ with a perpendicular polarization coding crystal orientation along x. (c), (d) EBSD scan image coding the crystal orientation along the x axis and along the y axis at (c) 1.0 μJ and (d) 0.6 μJ, respectively. The polarization for writing is parallel to the laser motion direction. Laser tracks were profiled with red dashed lines. Other laser parameters: 300 kHz, 5μm/s, 300 fs, 1030 nm, and NA=0.6.

Fig. 5.
Fig. 5.

(a) Second harmonic microscopy images of the written lines with different pulse energies below the glass surface of 350 μm. (b) Polarization dependence of normalized SH intensity of the written lines at 0.5 μJ (red), 0.7 (black), and 1.0 μJ (blue) as a function of probing polarization angle; the line direction is at 0° (//x). Other laser parameters: 300 kHz, 5μm/s, 300 fs, 1030 nm, and NA=0.6; laser polarization parallel to the writing direction.

Fig. 6.
Fig. 6.

(a) Schema of laser spot moving from point A to point B with ABlaser diameter. (b) Temperature–time profiles at point A at different pulse energies: E1(red)>E2(yellow)>E3(blue).

Metrics