Abstract

This paper reports a numerical investigation of a periodic metallic structure sandwiched between two quartz plates. The volume comprised between the quartz plates and the metallic structure is infiltrated by a mixture of azo-dye-doped liquid crystal. The exposure to a low power visible light beam modifies the azo dye molecular configuration, thus allowing the wavelength shift of the resonance of the system. The wavelength shift depends on the geometry of the periodic structure and it also depends on the intensity of the visible light beam.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).
  2. J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
    [CrossRef]
  3. I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
    [CrossRef]
  4. H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
    [CrossRef]
  5. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef]
  6. N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
    [CrossRef]
  7. S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express 17, 8542–8547 (2009).
    [CrossRef]
  8. G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
    [CrossRef]
  9. M. Dridi and A. Vial, “Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance,” Opt. Lett. 34, 2652–2654 (2009).
    [CrossRef]
  10. E. M. Phizicky and S. Fields, “Protein–protein interactions: methods for detection and analysis,” Microbiol. Rev. 59, 94–123 (1995).
  11. J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008).
    [CrossRef]
  12. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
    [CrossRef]
  13. J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
    [CrossRef]
  14. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
    [CrossRef]
  15. G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
    [CrossRef]
  16. S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett. 36, 37–39 (2011).
    [CrossRef]
  17. D. C. Zografopoulos and R. Beccherelli, “A vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
    [CrossRef]
  18. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
    [CrossRef]
  19. Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
    [CrossRef]
  20. D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
    [CrossRef]
  21. D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
    [CrossRef]
  22. Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).
  23. Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
    [CrossRef]
  24. L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011).
    [CrossRef]
  25. G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
    [CrossRef]
  26. D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
    [CrossRef]
  27. J. Li, S. Gauza, and S. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
    [CrossRef]
  28. http://www.comsol.com .
  29. B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
    [CrossRef]
  30. I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).
  31. L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
    [CrossRef]
  32. G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
    [CrossRef]
  33. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2013 (3)

D. C. Zografopoulos and R. Beccherelli, “A vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

2012 (4)

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
[CrossRef]

2011 (7)

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett. 36, 37–39 (2011).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
[CrossRef]

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

2010 (2)

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

2009 (4)

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
[CrossRef]

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
[CrossRef]

S. Olcum, A. Kocabas, G. Ertas, A. Atalar, and A. Aydinli, “Tunable surface plasmon resonance on an elastomeric substrate,” Opt. Express 17, 8542–8547 (2009).
[CrossRef]

M. Dridi and A. Vial, “Modeling of metallic nanostructures embedded in liquid crystals: application to the tuning of their plasmon resonance,” Opt. Lett. 34, 2652–2654 (2009).
[CrossRef]

2008 (2)

J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008).
[CrossRef]

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

2004 (2)

J. Li, S. Gauza, and S. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

2003 (3)

G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).

2002 (1)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

1999 (1)

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

1995 (1)

E. M. Phizicky and S. Fields, “Protein–protein interactions: methods for detection and analysis,” Microbiol. Rev. 59, 94–123 (1995).

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Asquini, R.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

Atalar, A.

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Aubard, J.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Aussenegg, F. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Aydinli, A.

Beccherelli, R.

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “A vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
[CrossRef]

Bellini, B.

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
[CrossRef]

Bezuglyi, E. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
[CrossRef]

Capasso, F.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Chen, S.

Chiang, I.-K.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

d’Alessandro, A.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

De Sio, L.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011).
[CrossRef]

Di Fabrizio, M.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Dridi, M.

Ebbsen, T. W.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Ertas, G.

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Felidj, N.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Fields, S.

E. M. Phizicky and S. Fields, “Protein–protein interactions: methods for detection and analysis,” Microbiol. Rev. 59, 94–123 (1995).

Francescangeli, O.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

Garcia-Vidal, F. J.

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Gauza, S.

J. Li, S. Gauza, and S. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).

Gilardi, G.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

Hao, Q.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Hogle, M.

J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008).
[CrossRef]

Hu, H.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

Huang, T. J.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

Ji, J.

J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008).
[CrossRef]

Jin, P.

G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jun Huang, T.

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Kats, A. V.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
[CrossRef]

Khoo, I.

Khoo, I. C.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Khoo, I.-C.

I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Kiraly, B.

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Kocabas, A.

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Krenn, J. R.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Kriezis, E. E.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

Krishna Juluri, B.

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Lamprecht, B.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Lapsley, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Larson, D. N.

J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008).
[CrossRef]

Leitner, A.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Levchenko, A.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
[CrossRef]

Levi, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Lezec, H. J.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).

Li, J.

J. Li, S. Gauza, and S. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

Liou, J.

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Liu, Y. J.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Liu, Z.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

Lu, M.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

Lucchetti, L.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

Ma, C.

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

Ma, Y.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
[CrossRef]

Maier, S. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Mortensen, N. A.

G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
[CrossRef]

S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett. 36, 37–39 (2011).
[CrossRef]

Nakao, S.

G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
[CrossRef]

Nawaz, A. A.

Nikitin, A. Y.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
[CrossRef]

Olcum, S.

Pendry, P. B.

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Pflugl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Phizicky, E. M.

E. M. Phizicky and S. Fields, “Protein–protein interactions: methods for detection and analysis,” Microbiol. Rev. 59, 94–123 (1995).

Porto, J. A.

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Salerno, M.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Schider, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Serak, S.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011).
[CrossRef]

Simoni, F.

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

Smalley, J. S. T.

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Spevak, I. S.

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
[CrossRef]

Tabiryan, N.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011).
[CrossRef]

Tasolamprou, A. C.

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

Tazawa, M.

G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
[CrossRef]

Thio, T.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).

Umeton, C.

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011).
[CrossRef]

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

Vial, A.

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Wolff, P. A.

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).

Wu, S.

J. Li, S. Gauza, and S. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

Xiao, S.

G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
[CrossRef]

S. Xiao and N. A. Mortensen, “Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays,” Opt. Lett. 36, 37–39 (2011).
[CrossRef]

Xu, G.

G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
[CrossRef]

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Yang, J. C.

J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008).
[CrossRef]

Yoshimura, K.

G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
[CrossRef]

Yu, N.

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Zhang, B.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Zhao, Y.

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, I. Khoo, S. Chen, and T. J. Huang, “Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array,” Opt. Express 19, 15221–15228 (2011).
[CrossRef]

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

J. S. T. Smalley, Y. Zhao, A. A. Nawaz, Q. Hao, Y. Ma, I. Khoo, and T. J. Huang, “High contrast modulation of plasmonic signals using nanoscale dual-frequency liquid crystals,” Opt. Express 19, 15265–15274 (2011).
[CrossRef]

Zheng, Y. B.

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

Zografopoulos, D. C.

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

D. C. Zografopoulos and R. Beccherelli, “A vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

D. C. Zografopoulos and R. Beccherelli, “A vertically-coupled liquid-crystal long-range plasmonic optical switch,” Appl. Phys. Lett. 102, 101103 (2013).
[CrossRef]

Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. Jun Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010).
[CrossRef]

Y. Zhao, Q. Hao, Y. Ma, M. Lu, B. Zhang, M. Lapsley, I. C. Khoo, and T. J. Huang, “Light-driven tunable dual-band plasmonic absorber using liquid-crystal-coated asymmetric nanodisk array,” Appl. Phys. Lett. 100, 053119 (2012).
[CrossRef]

H. Hu, C. Ma, and Z. Liu, “Plasmonic dark field microscopy,” Appl. Phys. Lett. 96, 113107 (2010).
[CrossRef]

G. Xu, M. Tazawa, P. Jin, S. Nakao, and K. Yoshimura, “Wavelength tuning of surface plasmon resonance using dielectric layers on silver island films,” Appl. Phys. Lett. 82, 3811–3813 (2003).
[CrossRef]

J. Appl. Phys. (2)

Q. Hao, Y. Zhao, B. Krishna Juluri, B. Kiraly, J. Liou, I. C. Khoo, and T. J. Huang, “Frequency-addressed tunable transmission in optically thin metallic nanohole arrays with dual-frequency liquid crystals,” J. Appl. Phys. 109, 084340 (2011).
[CrossRef]

J. Li, S. Gauza, and S. Wu, “Temperature effect on liquid crystal refractive indices,” J. Appl. Phys. 96, 19–24 (2004).
[CrossRef]

J. Mater. Chem. (1)

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic azo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21, 6811–6814 (2011).
[CrossRef]

J. Opt. (1)

D. C. Zografopoulos and R. Beccherelli, “Liquid-crystal tunable metal-insulator-metal plasmonic waveguides and Bragg resonators,” J. Opt. 15, 055009 (2013).
[CrossRef]

J. Phys. Chem C (1)

Y. J. Liu, Y. B. Zheng, J. Liou, I.-K. Chiang, I. C. Khoo, and T. J. Huang, “All-optical modulation of localized surface plasmon coupling in a hybrid system composed of photoswitchable gratings and Au nanodisk arrays,” J. Phys. Chem C 115, 7717–7722 (2011).

J. Phys. D (1)

B. Bellini and R. Beccherelli, “Modelling, design and analysis of liquid crystal waveguides in preferentially etched silicon grooves,” J. Phys. D 42, 045111 (2009).
[CrossRef]

Lab Chip (1)

D. C. Zografopoulos, R. Asquini, E. E. Kriezis, A. d’Alessandro, and R. Beccherelli, “Guided-wave liquid-crystal photonics,” Lab Chip 12, 3598–3610 (2012).
[CrossRef]

Microbiol. Rev. (1)

E. M. Phizicky and S. Fields, “Protein–protein interactions: methods for detection and analysis,” Microbiol. Rev. 59, 94–123 (1995).

Mol. Cryst. Liq. Cryst. (1)

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “All-optical and thermal tuning of a Bragg grating based on photosensitive composite structures containing liquid crystals,” Mol. Cryst. Liq. Cryst. 558, 64–71 (2012).
[CrossRef]

Nano Lett. (1)

J. C. Yang, J. Ji, M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8, 2718–2724 (2008).
[CrossRef]

Nat. Mater. (1)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Nat. Photonics (1)

N. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2, 564–570 (2008).
[CrossRef]

Nature (1)

T. W. Ebbsen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 548–556 (2003).

Opt. Commun. (1)

L. Lucchetti, M. Di Fabrizio, O. Francescangeli, and F. Simoni, “Colossal optical nonlinearity in dye doped liquid crystals,” Opt. Commun. 233, 417–424 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett (1)

G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. Umeton, “Observation of tunable optical filtering in photosensitive composite structure containing liquid crystals,” Opt. Lett 36, 4755–4757 (2011).
[CrossRef]

Opt. Lett. (2)

Photon. Nanostr. Fundam. Appl. (2)

G. Gilardi, S. Xiao, R. Beccherelli, A. d’Alessandro, and N. A. Mortensen, “Geometrical and fluidic tuning of periodically modulated thin metal films,” Photon. Nanostr. Fundam. Appl. 10, 177–182 (2012).
[CrossRef]

D. C. Zografopoulos, R. Beccherelli, A. C. Tasolamprou, and E. E. Kriezis, “Liquid-crystal tunable waveguides for integrated plasmonic components,” Photon. Nanostr. Fundam. Appl. 11, 73–84 (2013).
[CrossRef]

Phys. Rev. B (3)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

I. S. Spevak, A. Y. Nikitin, E. V. Bezuglyi, A. Levchenko, and A. V. Kats, “Resonantly suppressed transmission and anomalously enhanced light absorption in periodically modulated ultrathin metal films,” Phys. Rev. B 79, 161406R (2009).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

J. A. Porto, F. J. Garcia-Vidal, and P. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999).
[CrossRef]

Other (2)

I.-C. Khoo, Liquid Crystals, 2nd ed. (Wiley, 2007).

http://www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the device. T is the period of the structure, a and b denote the internal and external radius of the rings, respectively, h is the thickness of the rings, and t is the distance between the quartz plates. The bottom left inset sketches the orientation of the liquid crystal molecular director, n.

Fig. 2.
Fig. 2.

Mixture refractive indices for four values of the optical pump. Refractive index variation for disk (a=0nm) (left) and ring with a=250nm (right). For all cases reported, T=800nm, b=300nm, h=20nm, and t=1000nm.

Fig. 3.
Fig. 3.

MR:E7 mixture refractive index for three different points of the cell versus laser pump power. The geometrical parameters considered are T=800nm, a=0, b=300nm, and t=1000nm.

Fig. 4.
Fig. 4.

Simulated zero-order transmittance spectra as a function of the gold thickness, for a=0nm, b=300nm, and T=800nm, without a pump signal.

Fig. 5.
Fig. 5.

Resonant wavelength position as a function of the gold thickness, for b=300nm and T=800nm, without a pump signal.

Fig. 6.
Fig. 6.

Simulated zero-order transmittance spectra as a function of the gold thickness (h). The geometry considered is a=0nm (disks), b=300nm, and T=800nm. The dashed and solid lines compare optical pumping with Psat=40mW/cm2 to the case of no pumping.

Fig. 7.
Fig. 7.

Simulated zero-order transmittance spectra as a function of the gold thickness (h). The geometry considered is a=250nm (ring), b=300nm, and T=800nm. The dashed and solid lines compare optical pumping with Psat=40mW/cm2 to the case of no pumping.

Fig. 8.
Fig. 8.

Detailed tuning of the spectral response due to the laser pump power variation. The geometry considered is a=0nm, b=300nm, h=20nm, and T=800nm.

Fig. 9.
Fig. 9.

Detailed tuning of the spectral response due to the laser pump power variation. The geometry considered is a=250nm, b=300nm, h=20nm, and T=800nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n=npar2+2nperp23=1.565.
F=FLC+FMR,
FLC=12K11(·n)2+12K22[n·(×n)]2+12K33[n×(×n)]2,
FMR=12ηε0[ΔεMR(n·E⃗PUMP)2+εMRE⃗PUMP·E⃗PUMP].
kSPR=k±gPx±fPy,

Metrics