Abstract

We report on the crystal growth, spectroscopic investigations, and the demonstration of visible laser operation of Pr,Mg:CaAl12O19. Crystals with dopant concentrations of 1 and 6 at. % were grown by the Czochralski method. Polarization-dependent ground-state absorption and emission spectra as well as the excited state absorption characteristics were recorded in the visible spectral region. Furthermore, the decay dynamics of the P03 manifold and the radiative lifetime were determined. By employing a 6 at. % doped Pr,Mg:CaAl12O19 crystal as gain medium and a frequency doubled optically pumped semiconductor laser as pump source, cw laser operation was realized at 644.3 and at 725.2 nm. Maximum output powers and slope efficiencies exceeded 320 mW and 25%, respectively.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29, 2638–2640 (2004).
    [CrossRef]
  2. S. Y. Leigh and J. T. C. Liu, “Multi-color miniature dual-axis confocal microscope for point-of-care pathology,” Opt. Lett. 37, 2430–2432 (2012).
    [CrossRef]
  3. U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1 watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21, 9091–9092 (2013).
    [CrossRef]
  4. F. M. J. Cozijn, J. Biesheuvel, A. S. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, and J. C. J. Koelemeij, “Laser cooling of beryllium ions using a frequency-doubled 626  nm diode laser,” Opt. Lett. 38, 2370–2372 (2013).
    [CrossRef]
  5. T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4  cw lasers: efficient laser operation at 522.6  nm, 545.9  nm, 607.2  nm, and 639.5  nm,” Opt. Lett. 36, 1002–1004 (2011).
    [CrossRef]
  6. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  7. A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993)
    [CrossRef]
  8. A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
    [CrossRef]
  9. B. P. Sobolev, “Chemical aspects of crystal growth of multicomponent fluoride materials from the melt,” Crystallogr. Rep. 47, S63–S75 (2002).
    [CrossRef]
  10. Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3Al5O12,” Phys. Rev. B 49, 14827–14835 (1994).
    [CrossRef]
  11. M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.
  12. M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
    [CrossRef]
  13. M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011).
    [CrossRef]
  14. L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
    [CrossRef]
  15. F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+,Mg2+:SrAl12O19,” Opt. Lett. 37, 4889–4891 (2012).
    [CrossRef]
  16. F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013).
    [CrossRef]
  17. A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
    [CrossRef]
  18. D. A. Jerebtsov and G. G. Mikhailov, “Phase diagram of CaO-Al2O3 system,” Ceram. Int. 27, 25–28 (2001).
    [CrossRef]
  19. A. Richter, “Laser parameters and performance of Pr3+-doped fluorides operating in the visible spectral region,” Ph.D. thesis (Universität Hamburg, 2008).
  20. N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010).
    [CrossRef]
  21. J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
    [CrossRef]
  22. J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. B 25, 5638–5645 (1982).
    [CrossRef]
  23. C. Mello-Donega, A. Meijerink, and G. Blasse, “Non-radiative relaxation processes of the Pr3+-ion,” J. Appl. Spectrosc. 62, 664–670 (1995).
    [CrossRef]
  24. G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
    [CrossRef]
  25. F. Reichert, F. Moglia, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20, 20387–20395 (2012).
    [CrossRef]
  26. D. Parisi, S. Veronesi, and M. Tonelli, “Effects of polarized excitation on the PJ3 manifolds emission in KYF4: Pr3+ single crystal,” Opt. Mater. 34, 410–413 (2011).
    [CrossRef]
  27. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62, 15640–15649 (2000).
    [CrossRef]
  28. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64, 125117 (2001).
    [CrossRef]
  29. P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides,” J. Lumin. 99, 283–299 (2002).
    [CrossRef]
  30. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
    [CrossRef]

2013 (3)

2012 (3)

2011 (3)

D. Parisi, S. Veronesi, and M. Tonelli, “Effects of polarized excitation on the PJ3 manifolds emission in KYF4: Pr3+ single crystal,” Opt. Mater. 34, 410–413 (2011).
[CrossRef]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4  cw lasers: efficient laser operation at 522.6  nm, 545.9  nm, 607.2  nm, and 639.5  nm,” Opt. Lett. 36, 1002–1004 (2011).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011).
[CrossRef]

2010 (1)

2009 (1)

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
[CrossRef]

2007 (1)

2005 (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

2004 (2)

A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29, 2638–2640 (2004).
[CrossRef]

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

2002 (2)

B. P. Sobolev, “Chemical aspects of crystal growth of multicomponent fluoride materials from the melt,” Crystallogr. Rep. 47, S63–S75 (2002).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides,” J. Lumin. 99, 283–299 (2002).
[CrossRef]

2001 (2)

D. A. Jerebtsov and G. G. Mikhailov, “Phase diagram of CaO-Al2O3 system,” Ceram. Int. 27, 25–28 (2001).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64, 125117 (2001).
[CrossRef]

2000 (1)

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62, 15640–15649 (2000).
[CrossRef]

1996 (1)

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

1995 (2)

C. Mello-Donega, A. Meijerink, and G. Blasse, “Non-radiative relaxation processes of the Pr3+-ion,” J. Appl. Spectrosc. 62, 664–670 (1995).
[CrossRef]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

1994 (1)

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3Al5O12,” Phys. Rev. B 49, 14827–14835 (1994).
[CrossRef]

1993 (1)

A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993)
[CrossRef]

1988 (1)

A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
[CrossRef]

1982 (1)

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. B 25, 5638–5645 (1982).
[CrossRef]

1975 (1)

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Bellancourt, A.-R.

Bergschneider, A.

Biesheuvel, J.

Blasse, G.

C. Mello-Donega, A. Meijerink, and G. Blasse, “Non-radiative relaxation processes of the Pr3+-ion,” J. Appl. Spectrosc. 62, 664–670 (1995).
[CrossRef]

Bludau, W.

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[CrossRef]

Blume, G.

Butterworth, S. D.

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Calmano, T.

Caprara, A. L.

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Charles, J. P.

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Cheung, Y. M.

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3Al5O12,” Phys. Rev. B 49, 14827–14835 (1994).
[CrossRef]

Chevy, F.

Chilla, J. L. A.

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Cozijn, F. M. J.

Danielmeyer, H. G.

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[CrossRef]

Diening, A.

Dorenbos, P.

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides,” J. Lumin. 99, 283–299 (2002).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64, 125117 (2001).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62, 15640–15649 (2000).
[CrossRef]

Eichler, H. J.

A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993)
[CrossRef]

Eismann, U.

Erbert, G.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Fechner, M.

F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+,Mg2+:SrAl12O19,” Opt. Lett. 37, 4889–4891 (2012).
[CrossRef]

F. Reichert, F. Moglia, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20, 20387–20395 (2012).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011).
[CrossRef]

M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.

Fibrich, M.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
[CrossRef]

Flores, A. S.

Gayen, S. K.

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3Al5O12,” Phys. Rev. B 49, 14827–14835 (1994).
[CrossRef]

Gün, T.

Guyot, Y.

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

Hansen, N.-O.

F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+,Mg2+:SrAl12O19,” Opt. Lett. 37, 4889–4891 (2012).
[CrossRef]

F. Reichert, F. Moglia, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20, 20387–20395 (2012).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011).
[CrossRef]

N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010).
[CrossRef]

M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.

Hegarty, J.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. B 25, 5638–5645 (1982).
[CrossRef]

Heumann, E.

Huber, D. L.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. B 25, 5638–5645 (1982).
[CrossRef]

Huber, G.

F. Reichert, T. Calmano, S. Müller, D.-T. Marzahl, P. W. Metz, and G. Huber, “Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides,” Opt. Lett. 38, 2698–2701 (2013).
[CrossRef]

F. Reichert, F. Moglia, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Diode pumped laser operation and spectroscopy of Pr3+:LaF3,” Opt. Express 20, 20387–20395 (2012).
[CrossRef]

F. Reichert, D.-T. Marzahl, P. Metz, M. Fechner, N.-O. Hansen, and G. Huber, “Efficient laser operation of Pr3+,Mg2+:SrAl12O19,” Opt. Lett. 37, 4889–4891 (2012).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011).
[CrossRef]

T. Gün, P. Metz, and G. Huber, “Power scaling of laser diode pumped Pr3+:LiYF4  cw lasers: efficient laser operation at 522.6  nm, 545.9  nm, 607.2  nm, and 639.5  nm,” Opt. Lett. 36, 1002–1004 (2011).
[CrossRef]

N.-O. Hansen, A.-R. Bellancourt, U. Weichmann, and G. Huber, “Efficient green continuous-wave lasing of blue-diode-pumped solid-state lasers based on praseodymium-doped LiYF4,” Appl. Opt. 49, 3864–3868 (2010).
[CrossRef]

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
[CrossRef]

A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29, 2638–2640 (2004).
[CrossRef]

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[CrossRef]

M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.

Jelínková, H.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
[CrossRef]

Jerebtsov, D. A.

D. A. Jerebtsov and G. G. Mikhailov, “Phase diagram of CaO-Al2O3 system,” Ceram. Int. 27, 25–28 (2001).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993)
[CrossRef]

Koelemeij, J. C. J.

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

Kojima, H.

A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
[CrossRef]

Kretzschmar, N.

Kruhler, W. W.

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[CrossRef]

Leigh, S. Y.

Liu, B.

A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993)
[CrossRef]

Liu, J. T. C.

Marumo, F.

A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
[CrossRef]

Marzahl, D.-T.

McIntosh, B.

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

Meijerink, A.

C. Mello-Donega, A. Meijerink, and G. Blasse, “Non-radiative relaxation processes of the Pr3+-ion,” J. Appl. Spectrosc. 62, 664–670 (1995).
[CrossRef]

Meindl, P.

A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993)
[CrossRef]

Mello-Donega, C.

C. Mello-Donega, A. Meijerink, and G. Blasse, “Non-radiative relaxation processes of the Pr3+-ion,” J. Appl. Spectrosc. 62, 664–670 (1995).
[CrossRef]

Merkle, L. D.

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

Metz, P.

Metz, P. W.

Mikhailov, G. G.

D. A. Jerebtsov and G. G. Mikhailov, “Phase diagram of CaO-Al2O3 system,” Ceram. Int. 27, 25–28 (2001).
[CrossRef]

Moglia, F.

Moncorgé, R.

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

Morikawa, H.

A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
[CrossRef]

Müller, S.

Nejezchleb, K.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Osiac, E.

Ostroumov, V.

Parisi, D.

D. Parisi, S. Veronesi, and M. Tonelli, “Effects of polarized excitation on the PJ3 manifolds emission in KYF4: Pr3+ single crystal,” Opt. Mater. 34, 410–413 (2011).
[CrossRef]

Paschke, K.

Petermann, K.

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011).
[CrossRef]

M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.

Petrosyan, A. G.

M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.

Reed, M. K.

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Reichert, F.

Richter, A.

A. Richter, E. Heumann, G. Huber, V. Ostroumov, and W. Seelert, “Power scaling of semiconductor laser pumped praseodymium-lasers,” Opt. Express 15, 5172–5178 (2007).
[CrossRef]

A. Richter, E. Heumann, E. Osiac, G. Huber, W. Seelert, and A. Diening, “Diode pumping of a continuous-wave Pr3+-doped LiYF4 laser,” Opt. Lett. 29, 2638–2640 (2004).
[CrossRef]

M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.

A. Richter, “Laser parameters and performance of Pr3+-doped fluorides operating in the visible spectral region,” Ph.D. thesis (Universität Hamburg, 2008).

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Salomon, C.

Seelert, W.

Sievers, F.

Škoda, V.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
[CrossRef]

Sobolev, B. P.

B. P. Sobolev, “Chemical aspects of crystal growth of multicomponent fluoride materials from the melt,” Crystallogr. Rep. 47, S63–S75 (2002).
[CrossRef]

Spinelli, L.

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Šulc, J.

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
[CrossRef]

Tanaka, K.

A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
[CrossRef]

Tonelli, M.

D. Parisi, S. Veronesi, and M. Tonelli, “Effects of polarized excitation on the PJ3 manifolds emission in KYF4: Pr3+ single crystal,” Opt. Mater. 34, 410–413 (2011).
[CrossRef]

Ubachs, W.

Utsunomiya, A.

A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
[CrossRef]

Verdun, H. R.

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

Veronesi, S.

D. Parisi, S. Veronesi, and M. Tonelli, “Effects of polarized excitation on the PJ3 manifolds emission in KYF4: Pr3+ single crystal,” Opt. Mater. 34, 410–413 (2011).
[CrossRef]

Weichmann, U.

Wicht, A.

Yen, W. M.

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. B 25, 5638–5645 (1982).
[CrossRef]

Zandi, B.

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

Zeitschel, A.

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (3)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61, 151–158 (1995).
[CrossRef]

M. Fibrich, H. Jelínková, J. Šulc, K. Nejezchleb, and V. Škoda, “Visible cw laser emission of GaN-diode pumped Pr:YAlO3 crystal,” Appl. Phys. B 97, 363–367 (2009).
[CrossRef]

M. Fechner, F. Reichert, N.-O. Hansen, K. Petermann, and G. Huber, “Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19,” Appl. Phys. B 102, 731–735 (2011).
[CrossRef]

Ceram. Int. (1)

D. A. Jerebtsov and G. G. Mikhailov, “Phase diagram of CaO-Al2O3 system,” Ceram. Int. 27, 25–28 (2001).
[CrossRef]

Crystallogr. Rep. (1)

B. P. Sobolev, “Chemical aspects of crystal growth of multicomponent fluoride materials from the melt,” Crystallogr. Rep. 47, S63–S75 (2002).
[CrossRef]

J. Appl. Phys. (3)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300  K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

L. D. Merkle, B. Zandi, R. Moncorgé, Y. Guyot, H. R. Verdun, and B. McIntosh, “Spectroscopy and laser operation of Pr,Mg:SrAl12O19,” J. Appl. Phys. 79, 1849–1856 (1996).
[CrossRef]

G. Huber, W. W. Kruhler, W. Bludau, and H. G. Danielmeyer, “Anisotropy in the laser performance of NdP5O14,” J. Appl. Phys. 46, 3580–3584 (1975).
[CrossRef]

J. Appl. Spectrosc. (1)

C. Mello-Donega, A. Meijerink, and G. Blasse, “Non-radiative relaxation processes of the Pr3+-ion,” J. Appl. Spectrosc. 62, 664–670 (1995).
[CrossRef]

J. Lumin. (1)

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides,” J. Lumin. 99, 283–299 (2002).
[CrossRef]

J. Solid State Chem. (1)

A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, “Structure refinement of CaO·Al2O3,” J. Solid State Chem. 75, 197–200 (1988).
[CrossRef]

Opt. Express (3)

Opt. Lett. (6)

Opt. Mater. (1)

D. Parisi, S. Veronesi, and M. Tonelli, “Effects of polarized excitation on the PJ3 manifolds emission in KYF4: Pr3+ single crystal,” Opt. Mater. 34, 410–413 (2011).
[CrossRef]

Phys. Rev. B (4)

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. I. Fluoride compounds,” Phys. Rev. B 62, 15640–15649 (2000).
[CrossRef]

P. Dorenbos, “5d-level energies of Ce3+ and the crystalline environment. III. Oxides containing ionic complexes,” Phys. Rev. B 64, 125117 (2001).
[CrossRef]

J. Hegarty, D. L. Huber, and W. M. Yen, “Fluorescence quenching by cross relaxation in LaF3: Pr3+,” Phys. Rev. B 25, 5638–5645 (1982).
[CrossRef]

Y. M. Cheung and S. K. Gayen, “Excited-state absorption in Pr3+:Y3Al5O12,” Phys. Rev. B 49, 14827–14835 (1994).
[CrossRef]

Phys. Status Solidi A (1)

A. A. Kaminskii, H. J. Eichler, B. Liu, and P. Meindl, “LiYF4: Pr3+ laser at 639.5  nm with 30  J flashlamp pumping and 87  mJ output energy,” Phys. Status Solidi A 138, K45–K48 (1993)
[CrossRef]

Proc. SPIE (1)

J. L. A. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High-power optically pumped semiconductor lasers,” Proc. SPIE 5332, 143–150 (2004).
[CrossRef]

Other (2)

M. Fechner, A. Richter, N.-O. Hansen, A. G. Petrosyan, K. Petermann, and G. Huber, “Continuous wave Pr3+:LuAlO3 laser in the visible range,” The European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference, Munich, Germany (2009), paper CA6.3.

A. Richter, “Laser parameters and performance of Pr3+-doped fluorides operating in the visible spectral region,” Ph.D. thesis (Universität Hamburg, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic energy-level diagram of the trivalent praseodymium ion. Arrows indicate optical transitions.

Fig. 2.
Fig. 2.

Polarization-dependent room-temperature absorption cross sections of Pr,Mg:CaAl12O19.

Fig. 3.
Fig. 3.

Decay dynamics and lifetimes of Pr,Mg:CAlO at temperatures between T=100 and 300 K.

Fig. 4.
Fig. 4.

Polarization-dependent room-temperature emission cross sections of Pr,Mg:CAlO.

Fig. 5.
Fig. 5.

Polarization-dependent room-temperature ESA of Pr,Mg:CAlO. In the spectral region between 420 and 470 nm the Si detector was oversaturated by scattered pump light, and the respective part of the spectrum was thus omitted.

Fig. 6.
Fig. 6.

Schematic of the V-type cavity employed for the laser experiments.

Fig. 7.
Fig. 7.

Input–output curves for room-temperature 2ω OPSL pumped Pr,Mg:CAlO cw lasers.

Tables (1)

Tables Icon

Table 1. Parameters of 2ω OPSL Pumped Pr,Mg:CAlO Lasers

Metrics