Abstract

We report on the design, characteristics, and measurements of a terahertz (THz) metamaterial absorber (MA) based on fractal Sierpinski curves. By applying the fractal structure as the top resonators array, a more compact unit cell with a size reduction of 42% and dual-frequency operation has been achieved as an advantage over the conventional square-shaped MA. In addition, due to the rotationally symmetric structure, the fractal absorber is polarization insensitive and can perform well at a wide range of incident angles. Both the effective medium theory and the multireflection interference theory have been employed to investigate the underlying physical mechanism of the proposed THz MA, and it is found that the latter theory is not applicable for explaining the absorption mechanism of our investigated structure. The THz MA was measured in the case of 30° oblique incidence under TE polarization, and two absorption peaks have been observed at 0.2 and 0.58 THz with absorptivities of 91% and 92.2%, respectively. A microwave MA based on the same Sierpinski structure has also been demonstrated to validate the performance of the fractal MA at various incident angles, and good agreements between the full-wave simulation and experimental results have been achieved.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
    [CrossRef]
  2. H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
    [CrossRef]
  3. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
    [CrossRef]
  4. S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, “Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber,” Prog. Electromagn. Res. Lett. 35, 135–144 (2012).
    [CrossRef]
  5. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
    [CrossRef]
  6. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
    [CrossRef]
  7. L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20, 4675–4680 (2012).
    [CrossRef]
  8. G. Wang, J. Shen, and Y. Jia, “Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range,” J. Appl. Phys. 102, 013106 (2007).
    [CrossRef]
  9. Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
    [CrossRef]
  10. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
    [CrossRef]
  11. H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
    [CrossRef]
  12. T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).
  13. Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
    [CrossRef]
  14. D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503–1510 (2012).
    [CrossRef]
  15. B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013).
    [CrossRef]
  16. M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
    [CrossRef]
  17. X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
    [CrossRef]
  18. L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).
  19. G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15, 055106 (2013).
    [CrossRef]
  20. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
    [CrossRef]
  21. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
    [CrossRef]
  22. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
    [CrossRef]
  23. H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
    [CrossRef]
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).
  25. J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).
  26. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
    [CrossRef]
  27. G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
    [CrossRef]
  28. J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21, 9691–9702 (2013).
    [CrossRef]
  29. H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
    [CrossRef]
  30. X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

2013 (5)

T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

B. Zhang, J. Hendrickson, and J. Guo, “Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures,” J. Opt. Soc. Am. B 30, 656–662 (2013).
[CrossRef]

J. W. Park, P. Van Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21, 9691–9702 (2013).
[CrossRef]

2012 (7)

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20, 4675–4680 (2012).
[CrossRef]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[CrossRef]

D. Cheng, J. Xie, H. Zhang, C. Wang, N. Zhang, and L. Deng, “Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum,” J. Opt. Soc. Am. B 29, 1503–1510 (2012).
[CrossRef]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, “Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber,” Prog. Electromagn. Res. Lett. 35, 135–144 (2012).
[CrossRef]

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

2011 (4)

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

2010 (3)

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
[CrossRef]

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

2009 (1)

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

2008 (5)

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

2007 (1)

G. Wang, J. Shen, and Y. Jia, “Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range,” J. Appl. Phys. 102, 013106 (2007).
[CrossRef]

2006 (2)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef]

Antonopoulos, C. S.

T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).

Assimonis, S. D.

T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).

Atlasbaf, Z.

S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, “Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber,” Prog. Electromagn. Res. Lett. 35, 135–144 (2012).
[CrossRef]

Averitt, R.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Averitt, R. D.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef]

Azad, A. K.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Bingham, C.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

Bingham, C. M.

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).

Chen, F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Chen, H.

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).

Chen, H. T.

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20, 7165–7172 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Chen, H.-T.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Chen, L. Y.

Cheng, D.

Cheng, H. F.

Cheng, Q.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Choi, E. H.

Chowdhury, D. R.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

Cui, T. J.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

Cummer, S. A.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

Dayal, G.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

Deng, L.

Dimitriadis, A. I.

T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).

Dolling, G.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef]

Enkrich, C.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef]

Fallahzadeh, S.

S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, “Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber,” Prog. Electromagn. Res. Lett. 35, 135–144 (2012).
[CrossRef]

Fan, K.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Feng, R.-s.

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Forooraghi, K.

S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, “Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber,” Prog. Electromagn. Res. Lett. 35, 135–144 (2012).
[CrossRef]

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

Gui, T.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Guo, J.

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

Hand, T. H.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

He, X.-J.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Hendrickson, J.

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef]

Hou, D.-Y.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
[CrossRef]

Hou, X.-W.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
[CrossRef]

Huang, L.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).

Huang, X.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

Jang, W. H.

Jia, Y.

G. Wang, J. Shen, and Y. Jia, “Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range,” J. Appl. Phys. 102, 013106 (2007).
[CrossRef]

Jiang, W. X.

Jin, B.

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Jokerst, N. M.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

Jun Cui, T.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

Kantartzis, N. V.

T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).

Kim, K. W.

Kollatou, T. M.

T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).

Koschny, T.

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Landy, N.

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Landy, N. I.

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef]

Lee, Y.

Li, H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

Li, M.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
[CrossRef]

Li, W.-w.

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Lin, H.

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Linden, S.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef]

Liu, Y.

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Luo, S. N.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

Ma, H. F.

Mock, J.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Mu, K.-j.

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

O’Hara, J. F.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Padilla, W.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Padilla, W. J.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef]

Palit, S.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

Park, J. W.

Pilon, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Ramakrishna, S. A.

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

Ramani, S.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

Reiten, M. T.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

Rhee, J. Y.

Sajuyigbe, S.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Shen, J.

G. Wang, J. Shen, and Y. Jia, “Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range,” J. Appl. Phys. 102, 013106 (2007).
[CrossRef]

Shen, X.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19, 9401–9407 (2011).
[CrossRef]

Shen, X. P.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Shrekenhamer, D.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Smith, D.

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

Soukoulis, C. M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef]

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Strikwerda, A.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Sun, L. K.

Tao, H.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Taylor, A. J.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef]

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Tian, Y.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
[CrossRef]

Tyler, T.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

Van Tuong, P.

Wang, C.

Wang, G.

G. Wang, J. Shen, and Y. Jia, “Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range,” J. Appl. Phys. 102, 013106 (2007).
[CrossRef]

Wang, J.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

L. K. Sun, H. F. Cheng, Y. J. Zhou, and J. Wang, “Broadband metamaterial absorber based on coupling resistive frequency selective surface,” Opt. Express 20, 4675–4680 (2012).
[CrossRef]

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Wang, Y.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Wegener, M.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef]

Wen, Q. Y.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).

Wu, Q.

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

Xie, J.

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Yang, H.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Yang, H.-L.

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
[CrossRef]

Yang, Q. H.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Yang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

Ye, Q.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Yu, S.

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

Yuan, L. H.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Yuan, Y.

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

Zhang, B.

Zhang, C.-l.

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Zhang, H.

Zhang, H. W.

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Zhang, L.-l.

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Zhang, N.

Zhang, W.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

Zhang, X.

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16, 7181–7188 (2008).
[CrossRef]

Zhao, J.

Zhou, B.

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

Zhou, J.

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Zhou, Q.-l.

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Zhou, Y. J.

Appl. Phys. A (1)

Q. Ye, Y. Liu, H. Lin, M. Li, and H. Yang, “Multiband metamaterial absorber made of multi-gap SRRs structure,” Appl. Phys. A 107, 155–160 (2012).
[CrossRef]

Appl. Phys. Lett. (5)

Q.-l. Zhou, C.-l. Zhang, K.-j. Mu, B. Jin, L.-l. Zhang, W.-w. Li, and R.-s. Feng, “Optical property and spectroscopy studies on the explosive 2, 4, 6-trinitro-1, 3, 5-trihydroxybenzene in the terahertz range,” Appl. Phys. Lett. 92, 101106 (2008).
[CrossRef]

Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu, “Dual band terahertz metamaterial absorber: design, fabrication, and characterization,” Appl. Phys. Lett. 95, 241111 (2009).
[CrossRef]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, N. M. Jokerst, and S. A. Cummer, “A dual-resonant terahertz metamaterial based on single-particle electric-field-coupled resonators,” Appl. Phys. Lett. 93, 191110 (2008).
[CrossRef]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Jun Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101, 154102 (2012).
[CrossRef]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. K. Azad, A. J. Taylor, and H. T. Chen, “Impact of resonator geometry and its coupling with ground plane on ultrathin metamaterial perfect absorbers,” Appl. Phys. Lett. 101, 101102 (2012).
[CrossRef]

J. Appl. Phys. (3)

X. Huang, H. Yang, S. Yu, J. Wang, M. Li, and Q. Ye, “Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber,” J. Appl. Phys. 113, 213516 (2013).
[CrossRef]

H. Li, L. H. Yuan, B. Zhou, X. P. Shen, Q. Cheng, and T. J. Cui, “Ultrathin multiband gigahertz metamaterial absorbers,” J. Appl. Phys. 110, 014909 (2011).
[CrossRef]

G. Wang, J. Shen, and Y. Jia, “Vibrational spectra of ketamine hydrochloride and 3, 4-methylenedioxymethamphetamine in terahertz range,” J. Appl. Phys. 102, 013106 (2007).
[CrossRef]

J. Opt. (1)

G. Dayal and S. A. Ramakrishna, “Design of multi-band metamaterial perfect absorbers with stacked metal–dielectric disks,” J. Opt. 15, 055106 (2013).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. D (1)

H. Tao, C. Bingham, D. Pilon, K. Fan, A. Strikwerda, D. Shrekenhamer, W. Padilla, X. Zhang, and R. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D 43, 225102 (2010).
[CrossRef]

Opt. Express (5)

Phys. Rev. B (1)

H. Tao, C. Bingham, A. Strikwerda, D. Pilon, D. Shrekenhamer, N. Landy, K. Fan, X. Zhang, W. Padilla, and R. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: design, fabrication, and characterization,” Phys. Rev. B 78, 241103 (2008).
[CrossRef]

Phys. Rev. Lett. (3)

N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008).
[CrossRef]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[CrossRef]

H.-T. Chen, J. Zhou, J. F. O’Hara, F. Chen, A. K. Azad, and A. J. Taylor, “Antireflection coating using metamaterials and identification of its mechanism,” Phys. Rev. Lett. 105, 073901 (2010).
[CrossRef]

Prog. Electromagn. Res. (4)

L. Huang and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Prog. Electromagn. Res. 113, 103–110 (2011).

T. M. Kollatou, A. I. Dimitriadis, S. D. Assimonis, N. V. Kantartzis, and C. S. Antonopoulos, “A family of ultra-thin, polarization-insensitive, multi-band, highly absorbing metamaterial structures,” Prog. Electromagn. Res. 136, 579–594 (2013).

X.-J. He, Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Prog. Electromagn. Res. 115, 381–397 (2011).

M. Li, H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, “Perfect metamaterial absorber with dual bands,” Prog. Electromagn. Res. 108, 37–49 (2010).
[CrossRef]

Prog. Electromagn. Res. Lett. (1)

S. Fallahzadeh, K. Forooraghi, and Z. Atlasbaf, “Design, simulation and measurement of a dual linear polarization insensitive planar resonant metamaterial absorber,” Prog. Electromagn. Res. Lett. 35, 135–144 (2012).
[CrossRef]

Science (1)

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Simultaneous negative phase and group velocity of light in a metamaterial,” Science 312, 892–894 (2006).
[CrossRef]

Other (2)

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).

J. Zhou, H. T. Chen, T. Koschny, A. K. Azad, A. J. Taylor, C. M. Soukoulis, and J. F. O’Hara, “Application of metasurface description for multilayered metamaterials and an alternative theory for metamaterial perfect absorber,” arXiv:1111.0343 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Perspective of unit cell based on the fractal pattern of second-order Sierpinski curve.

Fig. 2.
Fig. 2.

(a) Reflection and absorption of the fractal MA under normal incidence. (b) Absorption spectra of the fractal MA in comparison with the square-shaped MA.

Fig. 3.
Fig. 3.

Real and imaginary parts of the relative wave impedance at the air/MA interface.

Fig. 4.
Fig. 4.

Surface current distribution on the unit cell and the metal ground plane for (a) the square-shaped MA, (b) the first absorption resonance, and (c) the second absorption resonance of the fractal Sierpinski MA with the electric field E parallel to the x axis.

Fig. 5.
Fig. 5.

(a) Multiple reflections and interference model of the MA, where the fractal resonators array is indicated by the dashed line at the air/spacer interface. (b) Comparison between the theoretically calculated and full-wave simulated absorptivity.

Fig. 6.
Fig. 6.

Absorptivity as the function of different polarization direction under the normal incidence.

Fig. 7.
Fig. 7.

Dependence of absorptivity on the incident angles θ under (a) TE and (b) TM polarization.

Fig. 8.
Fig. 8.

(a) Microscopic image of a portion of the fabricated MA. The inset shows the enlarged unit cell. (b) Comparison between the simulation result and the measured absorptivity at 30° under TE polarization.

Fig. 9.
Fig. 9.

Photograph of the microwave MA. Inset shows the details of the unit cell.

Fig. 10.
Fig. 10.

Simulated absorption (upper) and experimentally measured absorption (below) of the fractal MA at various incident angles under (a) TE polarization and (b) TM polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Z/Z0=(1+S11)2S212(1S11)2S212.
R=r˜12t˜12t˜21ej2β˜1+r˜21ej2β˜,

Metrics