Abstract

This paper introduces the novel concept of a cross dipole nanoantenna for use in fluorescence based sensing applications. The dual-arm nature of the cross nanoantenna allows a dual resonant structure to be designed such that the shorter arm resonates with the pump wavelength and the longer arm with the emission wavelength. This is expected to further enhance emission from any fluorescent molecule that can couple to both nanoantenna arms when compared with a singly resonant structure. The paper uses the finite-difference time-domain method to first analyze the two-arm nanoantenna case and then shows how intensity enhancement depends on the antenna geometry and tapering of arms in the antenna gap. The results show that smaller gap sizes always produce larger enhancement compared with lightning rod effects due to tapering. A four-arm cross nanoantenna is then studied, highlighting differences from the two-arm case. Finally, the effect of a diagonally aligned molecule transiting the central gap region is studied. The results show that two hotspots occur on either side of the central gap region when the molecule is aligned perpendicular to the transit direction and only a single central hotspot occurs when the alignment is parallel to the transit direction.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).
  2. “Illumina,” www.illumina.com .
  3. “Pacific Biosciences,” www.pacificbiosciences.com .
  4. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
    [CrossRef]
  5. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
    [CrossRef]
  6. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [CrossRef]
  7. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
    [CrossRef]
  8. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Proc. Am. Phys. Soc. 69, 681 (1946).
  9. B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991).
  10. P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
    [CrossRef]
  11. Y. Akahane, T. Asano, and B. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [CrossRef]
  12. K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
    [CrossRef]
  13. R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
    [CrossRef]
  14. W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [CrossRef]
  15. A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
    [CrossRef]
  16. L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).
  17. L. Zou, W. Withayachumnankul, C. M. Shah, A. Mitchell, M. Bhaskaran, S. Sriram, and C. Fumeaux, “Dielectric resonator nanoantennas at visible frequencies,” Opt. Express 21, 1344–1352 (2013).
    [CrossRef]
  18. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
    [CrossRef]
  19. L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
    [CrossRef]
  20. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  21. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
    [CrossRef]
  22. S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
    [CrossRef]
  23. G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).
  24. O. L. Muskens and J. Gómez Rivas, “Enhanced light extraction from emitters close to clusters of resonant plasmonic nanoantennas,” Mater. Sci. Eng. B 149, 216–219 (2008).
    [CrossRef]
  25. S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
    [CrossRef]
  26. V. Dinesh Kumar, A. Bhardwaj, and D. Mishra, “Investigation of a turnstile nanoantenna,” Micro Nano Lett. 6, 94–97 (2011).
  27. P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
    [CrossRef]
  28. E. S. Unlü, R. U. Tok, and K. Sendur, “Broadband plasmonic nanoantenna with an adjustable spectral response,” Opt. Express 19, 1000–1006 (2011).
    [CrossRef]
  29. J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.
  30. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]
  31. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  32. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).
  33. M. Agio and M. Alu, Optical Antennas (Cambridge University, 2013).
  34. N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168–2173 (2004).
    [CrossRef]
  35. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
    [CrossRef]
  36. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
    [CrossRef]
  37. B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011).
    [CrossRef]
  38. H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15, 12095–12101 (2007).
    [CrossRef]
  39. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
    [CrossRef]
  40. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).
  41. S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

2013 (1)

2012 (1)

S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

2011 (4)

E. S. Unlü, R. U. Tok, and K. Sendur, “Broadband plasmonic nanoantenna with an adjustable spectral response,” Opt. Express 19, 1000–1006 (2011).
[CrossRef]

V. Dinesh Kumar, A. Bhardwaj, and D. Mishra, “Investigation of a turnstile nanoantenna,” Micro Nano Lett. 6, 94–97 (2011).

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

2010 (2)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

A. F. Koenderink, “On the use of Purcell factors for plasmon antennas,” Opt. Lett. 35, 4208–4210 (2010).
[CrossRef]

2009 (4)

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
[CrossRef]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

2008 (3)

G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).

O. L. Muskens and J. Gómez Rivas, “Enhanced light extraction from emitters close to clusters of resonant plasmonic nanoantennas,” Mater. Sci. Eng. B 149, 216–219 (2008).
[CrossRef]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express 16, 9144–9154 (2008).
[CrossRef]

2007 (2)

H. Guo, N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, “Resonance hybridization in double split-ring resonator metamaterials,” Opt. Express 15, 12095–12101 (2007).
[CrossRef]

L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).

2006 (1)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

2004 (2)

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168–2173 (2004).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
[CrossRef]

2003 (4)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Y. Akahane, T. Asano, and B. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

2002 (1)

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

2000 (2)

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

1999 (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

1998 (2)

1995 (1)

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

1983 (1)

P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

1981 (1)

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

1957 (1)

R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Proc. Am. Phys. Soc. 69, 681 (1946).

Agio, M.

M. Agio and M. Alu, Optical Antennas (Cambridge University, 2013).

Aizpurua, J.

G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).

Akahane, Y.

Y. Akahane, T. Asano, and B. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

Alimenti, F.

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

Alu, M.

M. Agio and M. Alu, Optical Antennas (Cambridge University, 2013).

Asano, T.

Y. Akahane, T. Asano, and B. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Barnes, W.

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bassindale, P.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bhardwaj, A.

V. Dinesh Kumar, A. Bhardwaj, and D. Mishra, “Investigation of a turnstile nanoantenna,” Micro Nano Lett. 6, 94–97 (2011).

Bhaskaran, M.

Biagioni, P.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
[CrossRef]

Bryant, G. W.

G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).

Calander, N.

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168–2173 (2004).
[CrossRef]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Collins, A.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Craddock, I.

L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Cryan, M.

L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).

Cryan, M. J.

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

De La Rue, R. M.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Dinesh Kumar, V.

S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

V. Dinesh Kumar, A. Bhardwaj, and D. Mishra, “Investigation of a turnstile nanoantenna,” Micro Nano Lett. 6, 94–97 (2011).

Djurisic, A. B.

Duò, L.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
[CrossRef]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

Elazar, J. M.

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Finazzi, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
[CrossRef]

Fischer, H.

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Fu, L.

Fumeaux, C.

Garcia de Abajo, F. J.

G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).

Giessen, H.

Gómez Rivas, J.

O. L. Muskens and J. Gómez Rivas, “Enhanced light extraction from emitters close to clusters of resonant plasmonic nanoantennas,” Mater. Sci. Eng. B 149, 216–219 (2008).
[CrossRef]

Goy, P.

P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Gross, M.

P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Guo, H.

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Haroche, S.

P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Hatami, F.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Heard, P. J.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Hecht, B.

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
[CrossRef]

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

Helbing, S.

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

Hell, S. W.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

Hilton, G. S.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Huang, J.

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
[CrossRef]

Huang, J.-S.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, N. P.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

Kleppner, D.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

Koenderink, A. F.

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

Kuball, M.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Lahiri, B.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
[CrossRef]

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Liu, N.

Maier, S. A.

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).

Majewski, M. L.

Martin, O. J. F.

Masselink, W. T.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

McMeekin, S. G.

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011).
[CrossRef]

Meyrath, T. P.

Mezzanotte, P.

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

Mishra, D.

V. Dinesh Kumar, A. Bhardwaj, and D. Mishra, “Investigation of a turnstile nanoantenna,” Micro Nano Lett. 6, 94–97 (2011).

Mitchell, A.

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Mullen, K.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Munns, J. W.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Muskens, O. L.

O. L. Muskens and J. Gómez Rivas, “Enhanced light extraction from emitters close to clusters of resonant plasmonic nanoantennas,” Mater. Sci. Eng. B 149, 216–219 (2008).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Oulton, R.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Pandey, H. O.

S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

Pohl, D. W.

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

Pozo, J.

L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Pugh, J. R.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Proc. Am. Phys. Soc. 69, 681 (1946).

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Raimond, J.

P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

Rajbala, S.

S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

Rakic, A. D.

Rarity, J.

L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).

Ritchie, R.

R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Rivoire, K.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Roselli, L.

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Saleh, B.

B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991).

Sanchis, L.

L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).

Savoini, M.

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

Schweizer, H.

Sendur, K.

Shah, C. M.

Song, B.

Y. Akahane, T. Asano, and B. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

Sorrentino, R.

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

Sriram, S.

Srivastava, A.

S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

Stokes, J.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Teich, M.

B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991).

Tok, R. U.

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Unlü, E. S.

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

Vuckovic, J.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

Withayachumnankul, W.

Yang, A.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Yu, Y.

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Zentgraf, T.

Zou, L.

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324, 153–169 (2004).
[CrossRef]

Anal. Chem. (1)

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76, 2168–2173 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

B. Lahiri, S. G. McMeekin, R. M. De La Rue, and N. P. Johnson, “Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators,” Appl. Phys. Lett. 98, 153116 (2011).
[CrossRef]

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006).
[CrossRef]

S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714 (2002).
[CrossRef]

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vucković, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

IEEE Microwave Guided Wave Lett. (1)

S. Helbing, M. J. Cryan, F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Design and verification of a novel crossed dipole structure for quasi-optical frequency doublers,” IEEE Microwave Guided Wave Lett. 10, 105–107 (2000).
[CrossRef]

J. Mod. Opt. (1)

W. Barnes, “Fluorescence near interfaces: the role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

J. Phys. Chem. B (1)

S. Link and M. A. El-Sayed, “Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods,” J. Phys. Chem. B 103, 8410–8426 (1999).
[CrossRef]

Mater. Sci. Eng. B (1)

O. L. Muskens and J. Gómez Rivas, “Enhanced light extraction from emitters close to clusters of resonant plasmonic nanoantennas,” Mater. Sci. Eng. B 149, 216–219 (2008).
[CrossRef]

Micro Nano Lett. (2)

S. Rajbala, A. Srivastava, H. O. Pandey, and V. Dinesh Kumar, “Investigation of a cross-slot nanoantenna and extraordinary transmission,” Micro Nano Lett. 7, 600–603 (2012).

V. Dinesh Kumar, A. Bhardwaj, and D. Mishra, “Investigation of a turnstile nanoantenna,” Micro Nano Lett. 6, 94–97 (2011).

Nano Lett. (1)

G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8, 631–636 (2008).

Nat. Photonics (2)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics 5, 83–90 (2011).
[CrossRef]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[CrossRef]

Nature (2)

Y. Akahane, T. Asano, and B. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. (1)

R. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957).
[CrossRef]

Phys. Rev. B (2)

P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80, 2–5 (2009).

L. Sanchis, M. Cryan, J. Pozo, I. Craddock, and J. Rarity, “Ultrahigh Purcell factor in photonic crystal slab microcavities,” Phys. Rev. B 76, 045118 (2007).

Phys. Rev. Lett. (3)

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 1–4 (2009).
[CrossRef]

P. Goy, J. Raimond, M. Gross, and S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50, 1903–1906 (1983).
[CrossRef]

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47, 233–236 (1981).
[CrossRef]

Proc. Am. Phys. Soc. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Proc. Am. Phys. Soc. 69, 681 (1946).

Proc. Natl. Acad. Sci. USA (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA 97, 8206–8210 (2000).

Science (2)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299, 682–686 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302, 419–422 (2003).
[CrossRef]

Ultramicroscopy (1)

L. Novotny, D. W. Pohl, and B. Hecht, “Light confinement in scanning near-field optical microscopy,” Ultramicroscopy 61, 1–9 (1995).
[CrossRef]

Other (6)

“Illumina,” www.illumina.com .

“Pacific Biosciences,” www.pacificbiosciences.com .

B. Saleh and M. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (Wiley, 1991).

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2010).

M. Agio and M. Alu, Optical Antennas (Cambridge University, 2013).

J. Stokes, P. Bassindale, J. W. Munns, Y. Yu, G. S. Hilton, J. R. Pugh, A. Yang, A. Collins, P. J. Heard, R. Oulton, M. Kuball, and M. J. Cryan, “Direct measurement of the radiation pattern of a nanoantenna dipole array,” in European Conference on Integrated Optics (ECIO), Barcelona, Spain, (Post Deadline) April2012, arXiv:1211.7231.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1.
Fig. 1.

Schematic of the general simulation setup of the antenna on an infinite glass substrate of n=1.5. (a) Two-arm dipole. (b) Cross arm dipole.

Fig. 2.
Fig. 2.

Intensity enhancement for different arm lengths at a point 400 nm above the center of the nanoantenna as shown in Fig. 1(a). The antenna is on an infinitely thick substrate of n=1.5 and the source is diagonally orientated in the x-y plane along the line y=x. The arms have a 40 nm width, a 50 nm height, and a 30 nm gap. The inset shows the L=100nm antenna for the PEC material and Au.

Fig. 3.
Fig. 3.

Spectra of intensity enhancement for different gap sizes 400 nm above the antenna. (a) g=5, 10, and 30 nm. (b) g=60, 80, and 100 nm. Arm length, width, and height are kept constant at 100, 40, and 50 nm, respectively, with a mesh size of 2.86 nm.

Fig. 4.
Fig. 4.

Direction of dipole moments for (a) the bonding and (b) the antibonding modes.

Fig. 5.
Fig. 5.

Intensity enhancement versus gap size for a FDTD simulated antenna with arm length, width, and height of 100, 40, and 50 nm, respectively (solid line), and a graph of 1/(gapsize)3 (dashed line).

Fig. 6.
Fig. 6.

Schematic of a two-arm dipole antenna with tapered ends.

Fig. 7.
Fig. 7.

Intensity enhancement of a two-arm dipole antenna with square (solid) and tapered ends (dashed) calculated 400 nm above the antenna for arm lengths of (a) 60–100 nm (b) and 120–160 nm for a 60 nm gap and (c) 60–100 nm and (d) 120–160 nm for a 30 nm gap in increments of 20 nm.

Fig. 8.
Fig. 8.

Intensity enhancement versus arm length for flat and tapered dipole antennas with gaps of 30 and 60 nm. Width and height were kept constant at 40 and 50 nm, respectively.

Fig. 9.
Fig. 9.

Schematic of the cross arm dipole antenna.

Fig. 10.
Fig. 10.

Intensity enhancement of an asymmetric cross dipole antenna with arm length Ly=60nm and Lx varying between 60 and 160 nm. The electric field is always in the axis of the arm measured, that is, Ex=100nm is the Ex field when Lx=100nm. Width, height, and gap are kept constant at 40, 50, and 30 nm, respectively.

Fig. 11.
Fig. 11.

Variation in peak resonant wavelength (black) and intensity enhancement (gray) with arm length of the tapered dipole (solid) and the tapered cross dipole (dotted) antenna. Resonant wavelength is plotted on the left vertical axis and intensity enhancement is plotted on the right vertical axis. In the cross case, the length of the vertical arm is kept constant at 60 nm. Both have width, height, and gap of 40, 50, and 30 nm, respectively, and are on a n=1.5 substrate.

Fig. 12.
Fig. 12.

Schematic of the setup used to investigate the dipole position. Five simulations are carried out, each with a dipole at a–e and each simulation is normalized with a dipole in free space with a matching location. The probe is localed centrally at z=400nm and the source electric field is orientated as depicted.

Fig. 13.
Fig. 13.

Spectra of the cross dipole antenna with Lx=120nm and Ly=100nm with the parameters shown in Fig. 12. (a) Ex field. (b) Ey field.

Fig. 14.
Fig. 14.

Summary of Fig. 13 showing enhancement versus dipole distance from center.

Metrics