Abstract

The growth of low-temperature-grown GaAs (LTG-GaAs) on semi-insulating GaAs substrate with a 0.2 μm n-GaAs buffer demonstrated enhanced terahertz (THz) emission in reflection and transmission excitation geometries via time-domain spectroscopy. The transient photocurrent of the sample in reflection and transmission geometries resulting from ultrafast excitation yielded a 215% and 165% increase in the THz emission, respectively, as compared with a sample grown with an undoped GaAs buffer. The LTG-GaAs film with n-GaAs buffer exhibited a significant increase in its built-in field as supported by calculations and photoreflectance experiments. The enhanced THz emission intensity was comparable with bulk p-InAs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
    [CrossRef]
  2. M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55  μm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
    [CrossRef]
  3. S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996).
    [CrossRef]
  4. J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994).
    [CrossRef]
  5. D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
    [CrossRef]
  6. M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
    [CrossRef]
  7. A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
    [CrossRef]
  8. H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
    [CrossRef]
  9. X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
    [CrossRef]
  10. N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Will, H.-W. Hubers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16, 19695–19705 (2008).
    [CrossRef]
  11. M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
    [CrossRef]
  12. V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
    [CrossRef]
  13. P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
    [CrossRef]
  14. H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008).
    [CrossRef]
  15. A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
    [CrossRef]
  16. E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
    [CrossRef]
  17. C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
    [CrossRef]
  18. M. Missous, “Stoichiometric low temperature (SLT) GaAs and AlGaAs grown by molecular beam epitaxy,” Microelectron. J. 27, 393–409 (1996).
    [CrossRef]
  19. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 1997).
  20. D. Koseoglu, H. H. Gullu, and H. Altan, “THz probe studies of MBE grown epitaxial GaAs,” J. Phys. Conf. Ser. 193, 012088 (2009).
    [CrossRef]
  21. D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, 2006).
  22. M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
    [CrossRef]
  23. Y. S. Lee, Principle of Terahertz Science and Technology (Springer Science+Business Media, 2009).
  24. P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties, 3rd ed. (Springer Science+Business Media, 2005).
  25. S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103, 113105 (2008).
    [CrossRef]

2011 (1)

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

2009 (2)

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
[CrossRef]

D. Koseoglu, H. H. Gullu, and H. Altan, “THz probe studies of MBE grown epitaxial GaAs,” J. Phys. Conf. Ser. 193, 012088 (2009).
[CrossRef]

2008 (5)

S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103, 113105 (2008).
[CrossRef]

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008).
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Will, H.-W. Hubers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16, 19695–19705 (2008).
[CrossRef]

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[CrossRef]

2004 (1)

A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
[CrossRef]

2002 (1)

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[CrossRef]

2000 (1)

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55  μm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

1997 (1)

1996 (2)

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996).
[CrossRef]

M. Missous, “Stoichiometric low temperature (SLT) GaAs and AlGaAs grown by molecular beam epitaxy,” Microelectron. J. 27, 393–409 (1996).
[CrossRef]

1995 (1)

D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
[CrossRef]

1994 (2)

J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994).
[CrossRef]

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

1992 (1)

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

1990 (1)

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

1989 (2)

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[CrossRef]

Adomavicius, R.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[CrossRef]

Altan, H.

D. Koseoglu, H. H. Gullu, and H. Altan, “THz probe studies of MBE grown epitaxial GaAs,” J. Phys. Conf. Ser. 193, 012088 (2009).
[CrossRef]

Angelo, J.

M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[CrossRef]

Arthur, J. R.

D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
[CrossRef]

Benjamin, S. D.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996).
[CrossRef]

Bertulis, K.

A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
[CrossRef]

Bhattacharya, K.

D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
[CrossRef]

Cadatal-Raduban, M.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Calawa, A. R.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Calderon, L.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Cardona, M.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties, 3rd ed. (Springer Science+Business Media, 2005).

Chen, W. M.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

Dutta, M.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Edamura, T.

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
[CrossRef]

Edumura, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Estacio, E.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Ezdi, K.

Fox, A.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

Freeouf, J. L.

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

George, T.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Grischkowsky, D.

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

Grutzmacher, D.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

Gu, P.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[CrossRef]

Gullu, H. H.

D. Koseoglu, H. H. Gullu, and H. Altan, “THz probe studies of MBE grown epitaxial GaAs,” J. Phys. Conf. Ser. 193, 012088 (2009).
[CrossRef]

Hangyo, M.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
[CrossRef]

Hasegawa, T.

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008).
[CrossRef]

Hubers, H.-W.

Jaculbia, R.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Kaminska, M.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Koch, M.

Kong, S. G.

S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103, 113105 (2008).
[CrossRef]

Kono, S.

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[CrossRef]

Kordos, P.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

Kortright, J. B.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Koseoglu, D.

D. Koseoglu, H. H. Gullu, and H. Altan, “THz probe studies of MBE grown epitaxial GaAs,” J. Phys. Conf. Ser. 193, 012088 (2009).
[CrossRef]

Krotkus, A.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[CrossRef]

A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
[CrossRef]

Kurpiewski, A.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

Lee, K.-S.

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55  μm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

Lee, Y. S.

Y. S. Lee, Principle of Terahertz Science and Technology (Springer Science+Business Media, 2009).

Lepsa, M.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

Liliental-Weber, Z.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Liu, K.

A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
[CrossRef]

Liu, X.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

Loka, H. S.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996).
[CrossRef]

Lou, J. K.

J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994).
[CrossRef]

Lu, Y.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Lux, R.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Malevich, V. L.

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[CrossRef]

Marso, M.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

Matsuura, S.

McInturff, D. T.

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

Melloch, M. R.

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

Mikulics, M.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

N. Vieweg, M. Mikulics, M. Scheller, K. Ezdi, R. Will, H.-W. Hubers, and M. Koch, “Impact of the contact metallization on the performance of photoconductive THz antennas,” Opt. Express 16, 19695–19705 (2008).
[CrossRef]

Misa, J. V.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Missous, M.

M. Missous, “Stoichiometric low temperature (SLT) GaAs and AlGaAs grown by molecular beam epitaxy,” Microelectron. J. 27, 393–409 (1996).
[CrossRef]

Mitchel, W. C.

M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[CrossRef]

Morgan, D. V.

J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994).
[CrossRef]

Nakajima, M.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
[CrossRef]

Nakashima, S.

Nakayama, M.

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008).
[CrossRef]

Nakazato, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Ng, K. K.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 1997).

Othonos, A.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996).
[CrossRef]

Otsuka, N.

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

Pamulapati, J.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Pham, M. H.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Poindexter, E. H.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Prasad, A.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

Que, C. T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
[CrossRef]

Rong, F. C.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Sakai, K.

Salvador, A.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Sarukura, N.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Scheller, M.

Schroder, D. K.

D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, 2006).

Schulte, D.

D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
[CrossRef]

Shen, H.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Shimizu, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Smith, F. W.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Smith, P. W. E.

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996).
[CrossRef]

Sobolewski, R.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

Somintac, A.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Stoschek, A.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

Subramanian, S.

D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
[CrossRef]

Sydor, M.

M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[CrossRef]

Sze, S. M.

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 1997).

Takatori, S.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Takeuchi, H.

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008).
[CrossRef]

Tani, M.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[CrossRef]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55  μm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

M. Tani, S. Matsuura, K. Sakai, and S. Nakashima, “Emission characteristics of photoconductive antennas based on low-temperature-grown GaAs and semi-insulating GaAs,” Appl. Opt. 36, 7853–7859 (1997).
[CrossRef]

Taysing-Lara, M.

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

Thomas, H.

J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994).
[CrossRef]

Tsaur, B.-Y.

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Ungier, L.

D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
[CrossRef]

Vieweg, N.

Warren, A. C.

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

Weber, E. R.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

Weber, Z. L.

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

Westwood, D.

J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994).
[CrossRef]

Will, R.

Wilson, J.

M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[CrossRef]

Woodall, J. M.

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

Wu, D. H.

S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103, 113105 (2008).
[CrossRef]

Wu, S.

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

Xu, J.

A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
[CrossRef]

Yanagisawa, J.

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008).
[CrossRef]

Yen, M. Y.

M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[CrossRef]

Yoshioka, T.

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Yu, P. Y.

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties, 3rd ed. (Springer Science+Business Media, 2005).

Zhang, X.-C.

A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[CrossRef]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55  μm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

E. Estacio, S. Takatori, M. H. Pham, T. Yoshioka, T. Nakazato, M. Cadatal-Raduban, T. Shimizu, N. Sarukura, M. Hangyo, C. T. Que, M. Tani, T. Edumura, M. Nakajima, J. V. Misa, R. Jaculbia, A. Somintac, and A. Salvador, “Intense terahertz emission from undoped GaAs/n-type GaAs and InAs/AlSb structures grown on Si substrates in the transmission-geometry excitation,” Appl. Phys. B 103, 825–829 (2011).
[CrossRef]

Appl. Phys. Lett. (8)

H. Takeuchi, J. Yanagisawa, T. Hasegawa, and M. Nakayama, “Enhancement of terahertz electromagnetic wave emission from an undoped GaAs/n-type GaAs epitaxial layer structure,” Appl. Phys. Lett. 93, 081916 (2008).
[CrossRef]

M. Tani, K.-S. Lee, and X.-C. Zhang, “Detection of terahertz radiation with low-temperature-grown GaAs-based photoconductive antenna using 1.55  μm probe,” Appl. Phys. Lett. 77, 1396–1398 (2000).
[CrossRef]

S. D. Benjamin, H. S. Loka, A. Othonos, and P. W. E. Smith, “Ultrafast dynamics of nonlinear absorption in low-temperature-GaAs,” Appl. Phys. Lett. 68, 2544–2546 (1996).
[CrossRef]

J. K. Lou, H. Thomas, D. V. Morgan, and D. Westwood, “Thermal annealing effect on low temperature molecular beam epitaxy grown GaAs: arsenic precipitation and the change of resistivity,” Appl. Phys. Lett. 64, 3614–3616 (1994).
[CrossRef]

M. Kaminska, Z. Liliental-Weber, E. R. Weber, T. George, J. B. Kortright, F. W. Smith, B.-Y. Tsaur, and A. R. Calawa, “Structural properties of As-rich GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 54, 1881–1883 (1989).
[CrossRef]

A. C. Warren, J. M. Woodall, J. L. Freeouf, D. Grischkowsky, D. T. McInturff, M. R. Melloch, and N. Otsuka, “Arsenic precipitates and the semi-insulating properties of GaAs buffer layers grown by low-temperature molecular beam epitaxy,” Appl. Phys. Lett. 57, 1331–1333 (1990).
[CrossRef]

H. Shen, F. C. Rong, R. Lux, J. Pamulapati, M. Taysing-Lara, M. Dutta, E. H. Poindexter, L. Calderon, and Y. Lu, “Fermi level pinning in low-temperature molecular beam epitaxial GaAs,” Appl. Phys. Lett. 61, 1585–1587 (1992).
[CrossRef]

X. Liu, A. Prasad, W. M. Chen, A. Kurpiewski, A. Stoschek, Z. L. Weber, and E. R. Weber, “Mechanism responsible for the semi-insulating properties of low-temperature-grown GaAs,” Appl. Phys. Lett. 65, 3002–3004 (1994).
[CrossRef]

C. R. Physique (1)

V. L. Malevich, R. Adomavicius, and A. Krotkus, “THz emission from semiconductor surfaces,” C. R. Physique 9, 130–141 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Mikulics, M. Marso, S. Wu, A. Fox, M. Lepsa, D. Grutzmacher, R. Sobolewski, and P. Kordos, “Sensitivity enhancement of metal-semiconductor-metal photodetectors on low-temperature-grown GaAs using alloyed contacts,” IEEE Photon. Technol. Lett. 20, 1054–1056 (2008).
[CrossRef]

J. Appl. Phys. (2)

S. G. Kong and D. H. Wu, “Signal restoration from atmospheric degradation in terahertz spectroscopy,” J. Appl. Phys. 103, 113105 (2008).
[CrossRef]

P. Gu, M. Tani, S. Kono, K. Sakai, and X.-C. Zhang, “Study of terahertz radiation from InAs and InSb,” J. Appl. Phys. 91, 5533–5537 (2002).
[CrossRef]

J. Electron. Mater. (1)

D. Schulte, S. Subramanian, L. Ungier, K. Bhattacharya, and J. R. Arthur, “Mobility of modulation doped AlGaAs/low-temperature MBE-grown GaAs heterostructures,” J. Electron. Mater. 24, 359–363 (1995).
[CrossRef]

J. Phys. Conf. Ser. (1)

D. Koseoglu, H. H. Gullu, and H. Altan, “THz probe studies of MBE grown epitaxial GaAs,” J. Phys. Conf. Ser. 193, 012088 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

C. T. Que, T. Edamura, M. Nakajima, M. Tani, and M. Hangyo, “Terahertz radiation from InAs films on silicon substrates excited by femtosecond laser pulses,” Jpn. J. Appl. Phys. 48, 010211 (2009).
[CrossRef]

Microelectron. J. (1)

M. Missous, “Stoichiometric low temperature (SLT) GaAs and AlGaAs grown by molecular beam epitaxy,” Microelectron. J. 27, 393–409 (1996).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (1)

M. Sydor, J. Angelo, J. Wilson, W. C. Mitchel, and M. Y. Yen, “Photoreflectance from GaAs and GaAs/GaAs interfaces,” Phys. Rev. B 40, 8473–8484 (1989).
[CrossRef]

Semicond. Sci. Technol. (1)

A. Krotkus, K. Bertulis, K. Liu, J. Xu, and X.-C. Zhang, “Terahertz emission from the structures containing low-temperature-grown GaAs layers,” Semicond. Sci. Technol. 19, S452–S453 (2004).
[CrossRef]

Other (4)

S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. (Wiley, 1997).

Y. S. Lee, Principle of Terahertz Science and Technology (Springer Science+Business Media, 2009).

P. Y. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties, 3rd ed. (Springer Science+Business Media, 2005).

D. K. Schroder, Semiconductor Material and Device Characterization, 3rd ed. (Wiley, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Cross sections of (a) sample A grown with undoped GaAs buffer and (b) sample B grown with n-doped GaAs buffer.

Fig. 2.
Fig. 2.

(a) The (2×4) RHEED streaks of the GaAs buffer at 580°C substrate temperature and (b) the (1×1) RHEED streaks of the LTG-GaAs at 400°C substrate temperature.

Fig. 3.
Fig. 3.

Energy-band diagram at the interfaces of sample A (a) before and (b) after contact. Fermi-level pinning is not shown. The shaded area corresponds to the substrate region.

Fig. 4.
Fig. 4.

Energy-band diagram at the interfaces of sample B (a) before and (b) after contact. Fermi-level pinning is not shown. The shaded area corresponds to the substrate region.

Fig. 5.
Fig. 5.

Linearized plot of the FKO extrema (j=1,2,3) as a function of the FKO index for sample A. The plot has a slope of 0.007 eV and y intercept of 1.444 eV. The inset shows the corresponding FKO in the photoreflectance. The boxed region in the inset was magnified five times for clarity.

Fig. 6.
Fig. 6.

Linearized plot of the FKO extrema (j=1,2,3,4) as a function of the FKO index for sample B. The plot has slope of 0.040 eV and y intercept of 1.373 eV. The inset shows the corresponding FKO in the photoreflectance.

Fig. 7.
Fig. 7.

THz waveforms of samples A and B in the reflection excitation geometry. Sample B grown with thin n-GaAs buffer showed higher THz emission as compared to sample A grown with thin undoped GaAs buffer. The emitted THz radiation in sample B was comparable to a bulk p-InAs wafer, which is an intense semiconductor surface emitter. The inset shows the corresponding power spectra of the THz waveforms of samples A and B in the reflection geometry.

Fig. 8.
Fig. 8.

THz waveforms of samples A and B in the transmission excitation geometry. Sample B grown with thin n-GaAs buffer showed higher THz emission as compared to sample A grown with thin undoped GaAs buffer. The inset shows the corresponding power spectra of the THz waveforms of samples A and B in the transmission geometry.

Tables (1)

Tables Icon

Table 1. Summary of Junction Electric Field Values

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ETHzJt,

Metrics