Abstract

The proposed schemes in this paper involve the interaction of a two-level atom with single- or two-mode quantized cavity fields (for different purposes) in the presence of a classical field. Indeed, following the path of Solano et al. in [Phys. Rev. Lett. 90, 027903 (2003)], the behavior of the entire atom-field system may be described by the Jaynes–Cummings (JC)- and anti-Jaynes–Cummings (anti-JC)-like models. It is illustrated that, under specific conditions, the effective Hamiltonian of the system can be switched from a JC- to an anti-JC-like model. During the process, the two-level atom in the cavity is alternately affected by the above two effective interactions. Ultimately, after the occurrence of the desired interactions in appropriate setups, the cavity field will arrive at a specific superposition of number states, a fixed number state, and in particular, two-mode binomial field states. Moreover, the entanglement property of the two-mode binomial state is investigated by evaluating the entropy criterion. While there exist various proposals for preparation of number states and their superpositions in the literature, our scheme has the advantage that it is independent of the detection of the atomic state after the interaction occurs.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
    [CrossRef]
  2. P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, “Photon number state generation with a single two-level atom in a cavity: a proposal,” Euro. Phys. J. 1, 1–4 (1998).
    [CrossRef]
  3. S. Brattke, B. T. H. Varoce, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534–3537 (2001).
    [CrossRef]
  4. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
    [CrossRef]
  5. A. Benmoussa and C. C. Gerry, “Proposal for generating Fock states in traveling wave fields,” Phys. Lett. A 365, 258–261 (2007).
  6. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
    [CrossRef]
  7. E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
    [CrossRef]
  8. J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation theory,” J. Math. Phys. 4, 1055 (1963).
    [CrossRef]
  9. V. V. Dodonov, I. A. Malkin, and V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator,” Physica 72, 597–615 (1974).
    [CrossRef]
  10. D. Stoler, B. E. A. Saleh, and M. C. Teich, “Binomial states of the quantized radiation field,” Opt. Acta 32, 345–355 (1985).
    [CrossRef]
  11. D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
    [CrossRef]
  12. H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976).
    [CrossRef]
  13. S. R. Miry, M. Shahpari, and M. K. Tavassoly, “Nonlinear elliptical states: generation and nonclassical properties,” Opt. Commun. 306, 49–56 (2013).
  14. J. Janszky, P. Domokos, and P. Adam, “Coherent states on a circle and quantum interference,” Phys. Rev. A 48, 2213–2219 (1993).
    [CrossRef]
  15. Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
    [CrossRef]
  16. S. J. van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
    [CrossRef]
  17. X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
    [CrossRef]
  18. N. B. An, “Teleportation of coherent-state superpositions within a network,” Phys. Rev. A 68, 022321 (2003).
    [CrossRef]
  19. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
    [CrossRef]
  20. K. L. Pregnell and D. T. Pegg, “Single-shot measurement of quantum optical phase,” Phys. Rev. Lett. 89, 173601 (2002).
    [CrossRef]
  21. N. K. Tran and O. Pfister, “Quantum teleportation with close-to-maximal entanglement from a beam splitter,” Phys. Rev. A 65, 052313 (2002).
    [CrossRef]
  22. V. Buzek and T. Quang, “Generalized coherent state for bosonic realization of SU(2) Lie algebra,” J. Opt. Soc. Am. B 6, 2447–2449 (1989).
    [CrossRef]
  23. C. C. Gerry and R. Grobe, “Two-mode SU(2) and SU(2) Schrödinger cat states,” J. Mod. Opt. 44, 41–53 (1997).
    [CrossRef]
  24. C. J. Villas-Bas, Y. Guimares, M. H. Y. Moussa, and B. Baseia, “Recurrence formula for generalized optical state truncation by projection synthesis,” Phys. Rev. A 63, 055801 (2001).
    [CrossRef]
  25. J. Fiurasek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A 65, 053818 (2002).
    [CrossRef]
  26. X. Zou, K. Palhlke, and W. Mathis, “Phase measurement and generation of arbitrary superposition of Fock states,” Phys. Lett. A 323, 329–338 (2004).
    [CrossRef]
  27. S.-B. Zheng, “Preparation of superpositions of Fock states via the interaction of a multi-level atom with the field,” Opt. Commun. 154, 290–292 (1998).
    [CrossRef]
  28. B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, “Relativistic coherent states and charge structure of the coordinate and momentum operators,” Phys. Rev. A 66, 022115 (2002).
    [CrossRef]
  29. J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems,” Phys. Rev. A 64, 013817 (2001).
    [CrossRef]
  30. A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
    [CrossRef]
  31. S. Sivakumar, “Photon-added coherent states in parametric down-conversion,” Phys. Rev. A 83, 035802 (2011).
    [CrossRef]
  32. M. S. Abdalla, A.-S. F. Obada, and M. Darwish, “Statistical properties of nonlinear intermediate states: binomial state,” J. Opt. B 7, S695–S704 (2005).
    [CrossRef]
  33. X.-G. Meng, J.-S. Wang, and B.-L. Liang, “The construction, properties and applications of a new bipartite coherent-entangled state in the two-mode Fock space,” Phys. Scr. 83, 025005 (2011).
    [CrossRef]
  34. P. M. Hernando and A. Luis, “Nonclassicality in phase-number uncertainty relations,” Phys. Rev. A 84, 063829 (2011).
    [CrossRef]
  35. E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
    [CrossRef]
  36. S.-B. Zheng, “Generation of nonclassical states with a driven dispersive interaction,” Phys. Rev. A 74, 043803 (2006).
    [CrossRef]
  37. G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Generation of phase-coherent states,” Phys. Rev. A 57, 4894–4898 (1998).
    [CrossRef]
  38. R. L. de Mathos Filho and W. Vogel, “Even and odd coherent states of the motion of a trapped ion,” Phys. Rev. Lett. 76, 608–611 (1996).
    [CrossRef]
  39. M. J. Collett, “Generation of number-phase squeezed states,” Phys. Rev. Lett. 70, 3400–3403 (1993).
    [CrossRef]
  40. B. M. Rodriguez-Lara, H. Moya-Cessa, and A. B. Klimov, “Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser,” Phys. Rev. A 71, 023811 (2005).
  41. S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
    [CrossRef]
  42. P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logmaic gate: the principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995).
    [CrossRef]
  43. A. Vidiella-Barranco and J. A. Roversi, “Statistical and phase properties of the binomial states of the electromagnetic field,” Phys. Rev. A 50, 5233–5241 (1994).
    [CrossRef]
  44. M. H. Y. Moussa and B. Baseia, “Generation of the reciprocal-binomial state,” Phys. Lett. A 238, 223–226 (1998).
    [CrossRef]
  45. R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Single-shot generation and detection of a two-photon generalized binomial state in a cavity,” Phys. Rev. A 74, 045803 (2006).
    [CrossRef]
  46. H.-C. Fu and R. Sasaki, “Negative binomial and multinomial states: probability distributions and coherent states,” J. Math. Phys. 38, 3968–3987 (1997).
    [CrossRef]
  47. G. S. Agarwal and A. Biswas, “Quantitative measures of entanglement in pair-coherent states,” J. Opt. B 7, 350–354 (2005).
    [CrossRef]
  48. S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404–2409 (1989).
    [CrossRef]
  49. S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom-field state in the Jaynes-Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).
    [CrossRef]
  50. R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).
    [CrossRef]
  51. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]

2013 (1)

S. R. Miry, M. Shahpari, and M. K. Tavassoly, “Nonlinear elliptical states: generation and nonclassical properties,” Opt. Commun. 306, 49–56 (2013).

2011 (4)

Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
[CrossRef]

S. Sivakumar, “Photon-added coherent states in parametric down-conversion,” Phys. Rev. A 83, 035802 (2011).
[CrossRef]

X.-G. Meng, J.-S. Wang, and B.-L. Liang, “The construction, properties and applications of a new bipartite coherent-entangled state in the two-mode Fock space,” Phys. Scr. 83, 025005 (2011).
[CrossRef]

P. M. Hernando and A. Luis, “Nonclassicality in phase-number uncertainty relations,” Phys. Rev. A 84, 063829 (2011).
[CrossRef]

2008 (1)

A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
[CrossRef]

2007 (1)

A. Benmoussa and C. C. Gerry, “Proposal for generating Fock states in traveling wave fields,” Phys. Lett. A 365, 258–261 (2007).

2006 (3)

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Single-shot generation and detection of a two-photon generalized binomial state in a cavity,” Phys. Rev. A 74, 045803 (2006).
[CrossRef]

S.-B. Zheng, “Generation of nonclassical states with a driven dispersive interaction,” Phys. Rev. A 74, 043803 (2006).
[CrossRef]

2005 (3)

B. M. Rodriguez-Lara, H. Moya-Cessa, and A. B. Klimov, “Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser,” Phys. Rev. A 71, 023811 (2005).

G. S. Agarwal and A. Biswas, “Quantitative measures of entanglement in pair-coherent states,” J. Opt. B 7, 350–354 (2005).
[CrossRef]

M. S. Abdalla, A.-S. F. Obada, and M. Darwish, “Statistical properties of nonlinear intermediate states: binomial state,” J. Opt. B 7, S695–S704 (2005).
[CrossRef]

2004 (1)

X. Zou, K. Palhlke, and W. Mathis, “Phase measurement and generation of arbitrary superposition of Fock states,” Phys. Lett. A 323, 329–338 (2004).
[CrossRef]

2003 (2)

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef]

N. B. An, “Teleportation of coherent-state superpositions within a network,” Phys. Rev. A 68, 022321 (2003).
[CrossRef]

2002 (4)

J. Fiurasek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A 65, 053818 (2002).
[CrossRef]

K. L. Pregnell and D. T. Pegg, “Single-shot measurement of quantum optical phase,” Phys. Rev. Lett. 89, 173601 (2002).
[CrossRef]

N. K. Tran and O. Pfister, “Quantum teleportation with close-to-maximal entanglement from a beam splitter,” Phys. Rev. A 65, 052313 (2002).
[CrossRef]

B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, “Relativistic coherent states and charge structure of the coordinate and momentum operators,” Phys. Rev. A 66, 022115 (2002).
[CrossRef]

2001 (5)

J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems,” Phys. Rev. A 64, 013817 (2001).
[CrossRef]

C. J. Villas-Bas, Y. Guimares, M. H. Y. Moussa, and B. Baseia, “Recurrence formula for generalized optical state truncation by projection synthesis,” Phys. Rev. A 63, 055801 (2001).
[CrossRef]

S. Brattke, B. T. H. Varoce, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534–3537 (2001).
[CrossRef]

S. J. van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
[CrossRef]

2000 (2)

R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).
[CrossRef]

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

1998 (5)

G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Generation of phase-coherent states,” Phys. Rev. A 57, 4894–4898 (1998).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

M. H. Y. Moussa and B. Baseia, “Generation of the reciprocal-binomial state,” Phys. Lett. A 238, 223–226 (1998).
[CrossRef]

P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, “Photon number state generation with a single two-level atom in a cavity: a proposal,” Euro. Phys. J. 1, 1–4 (1998).
[CrossRef]

S.-B. Zheng, “Preparation of superpositions of Fock states via the interaction of a multi-level atom with the field,” Opt. Commun. 154, 290–292 (1998).
[CrossRef]

1997 (2)

C. C. Gerry and R. Grobe, “Two-mode SU(2) and SU(2) Schrödinger cat states,” J. Mod. Opt. 44, 41–53 (1997).
[CrossRef]

H.-C. Fu and R. Sasaki, “Negative binomial and multinomial states: probability distributions and coherent states,” J. Math. Phys. 38, 3968–3987 (1997).
[CrossRef]

1996 (2)

R. L. de Mathos Filho and W. Vogel, “Even and odd coherent states of the motion of a trapped ion,” Phys. Rev. Lett. 76, 608–611 (1996).
[CrossRef]

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
[CrossRef]

1995 (1)

P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logmaic gate: the principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995).
[CrossRef]

1994 (1)

A. Vidiella-Barranco and J. A. Roversi, “Statistical and phase properties of the binomial states of the electromagnetic field,” Phys. Rev. A 50, 5233–5241 (1994).
[CrossRef]

1993 (3)

M. J. Collett, “Generation of number-phase squeezed states,” Phys. Rev. Lett. 70, 3400–3403 (1993).
[CrossRef]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef]

J. Janszky, P. Domokos, and P. Adam, “Coherent states on a circle and quantum interference,” Phys. Rev. A 48, 2213–2219 (1993).
[CrossRef]

1991 (1)

S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom-field state in the Jaynes-Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).
[CrossRef]

1989 (2)

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404–2409 (1989).
[CrossRef]

V. Buzek and T. Quang, “Generalized coherent state for bosonic realization of SU(2) Lie algebra,” J. Opt. Soc. Am. B 6, 2447–2449 (1989).
[CrossRef]

1985 (1)

D. Stoler, B. E. A. Saleh, and M. C. Teich, “Binomial states of the quantized radiation field,” Opt. Acta 32, 345–355 (1985).
[CrossRef]

1976 (1)

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976).
[CrossRef]

1974 (1)

V. V. Dodonov, I. A. Malkin, and V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator,” Physica 72, 597–615 (1974).
[CrossRef]

1970 (1)

D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
[CrossRef]

1963 (3)

J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[CrossRef]

E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
[CrossRef]

J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation theory,” J. Math. Phys. 4, 1055 (1963).
[CrossRef]

Abdalla, M. S.

M. S. Abdalla, A.-S. F. Obada, and M. Darwish, “Statistical properties of nonlinear intermediate states: binomial state,” J. Opt. B 7, S695–S704 (2005).
[CrossRef]

Adam, P.

J. Janszky, P. Domokos, and P. Adam, “Coherent states on a circle and quantum interference,” Phys. Rev. A 48, 2213–2219 (1993).
[CrossRef]

Agarwal, G. S.

G. S. Agarwal and A. Biswas, “Quantitative measures of entanglement in pair-coherent states,” J. Opt. B 7, 350–354 (2005).
[CrossRef]

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef]

An, N. B.

N. B. An, “Teleportation of coherent-state superpositions within a network,” Phys. Rev. A 68, 022321 (2003).
[CrossRef]

Barnett, S. M.

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404–2409 (1989).
[CrossRef]

Baseia, B.

C. J. Villas-Bas, Y. Guimares, M. H. Y. Moussa, and B. Baseia, “Recurrence formula for generalized optical state truncation by projection synthesis,” Phys. Rev. A 63, 055801 (2001).
[CrossRef]

M. H. Y. Moussa and B. Baseia, “Generation of the reciprocal-binomial state,” Phys. Lett. A 238, 223–226 (1998).
[CrossRef]

Benmoussa, A.

A. Benmoussa and C. C. Gerry, “Proposal for generating Fock states in traveling wave fields,” Phys. Lett. A 365, 258–261 (2007).

Biswas, A.

G. S. Agarwal and A. Biswas, “Quantitative measures of entanglement in pair-coherent states,” J. Opt. B 7, 350–354 (2005).
[CrossRef]

Bose, S.

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

Brattke, S.

S. Brattke, B. T. H. Varoce, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534–3537 (2001).
[CrossRef]

Brune, M.

P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, “Photon number state generation with a single two-level atom in a cavity: a proposal,” Euro. Phys. J. 1, 1–4 (1998).
[CrossRef]

P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logmaic gate: the principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995).
[CrossRef]

Buzek, V.

Collett, M. J.

M. J. Collett, “Generation of number-phase squeezed states,” Phys. Rev. Lett. 70, 3400–3403 (1993).
[CrossRef]

Compagno, G.

R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Single-shot generation and detection of a two-photon generalized binomial state in a cavity,” Phys. Rev. A 74, 045803 (2006).
[CrossRef]

D’Ariano, G. M.

G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Generation of phase-coherent states,” Phys. Rev. A 57, 4894–4898 (1998).
[CrossRef]

Darwish, M.

M. S. Abdalla, A.-S. F. Obada, and M. Darwish, “Statistical properties of nonlinear intermediate states: binomial state,” J. Opt. B 7, S695–S704 (2005).
[CrossRef]

de Mathos Filho, R. L.

R. L. de Mathos Filho and W. Vogel, “Even and odd coherent states of the motion of a trapped ion,” Phys. Rev. Lett. 76, 608–611 (1996).
[CrossRef]

Dodonov, V. V.

V. V. Dodonov, I. A. Malkin, and V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator,” Physica 72, 597–615 (1974).
[CrossRef]

Domokos, P.

P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, “Photon number state generation with a single two-level atom in a cavity: a proposal,” Euro. Phys. J. 1, 1–4 (1998).
[CrossRef]

P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logmaic gate: the principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995).
[CrossRef]

J. Janszky, P. Domokos, and P. Adam, “Coherent states on a circle and quantum interference,” Phys. Rev. A 48, 2213–2219 (1993).
[CrossRef]

Fiurasek, J.

J. Fiurasek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A 65, 053818 (2002).
[CrossRef]

Fu, H.-C.

H.-C. Fu and R. Sasaki, “Negative binomial and multinomial states: probability distributions and coherent states,” J. Math. Phys. 38, 3968–3987 (1997).
[CrossRef]

Gerry, C. C.

A. Benmoussa and C. C. Gerry, “Proposal for generating Fock states in traveling wave fields,” Phys. Lett. A 365, 258–261 (2007).

C. C. Gerry and R. Grobe, “Two-mode SU(2) and SU(2) Schrödinger cat states,” J. Mod. Opt. 44, 41–53 (1997).
[CrossRef]

Glauber, J.

J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[CrossRef]

Grobe, R.

C. C. Gerry and R. Grobe, “Two-mode SU(2) and SU(2) Schrödinger cat states,” J. Mod. Opt. 44, 41–53 (1997).
[CrossRef]

Guimares, Y.

C. J. Villas-Bas, Y. Guimares, M. H. Y. Moussa, and B. Baseia, “Recurrence formula for generalized optical state truncation by projection synthesis,” Phys. Rev. A 63, 055801 (2001).
[CrossRef]

Haroche, S.

P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, “Photon number state generation with a single two-level atom in a cavity: a proposal,” Euro. Phys. J. 1, 1–4 (1998).
[CrossRef]

P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logmaic gate: the principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995).
[CrossRef]

Hernando, P. M.

P. M. Hernando and A. Luis, “Nonclassicality in phase-number uncertainty relations,” Phys. Rev. A 84, 063829 (2011).
[CrossRef]

Hettich, C.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Hirota, O.

S. J. van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

Itano, W. M.

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
[CrossRef]

Janszky, J.

J. Janszky, P. Domokos, and P. Adam, “Coherent states on a circle and quantum interference,” Phys. Rev. A 48, 2213–2219 (1993).
[CrossRef]

Kimble, H. J.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef]

King, B. E.

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
[CrossRef]

Klauder, J. R.

B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, “Relativistic coherent states and charge structure of the coordinate and momentum operators,” Phys. Rev. A 66, 022115 (2002).
[CrossRef]

J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems,” Phys. Rev. A 64, 013817 (2001).
[CrossRef]

J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation theory,” J. Math. Phys. 4, 1055 (1963).
[CrossRef]

Klimov, A. B.

B. M. Rodriguez-Lara, H. Moya-Cessa, and A. B. Klimov, “Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser,” Phys. Rev. A 71, 023811 (2005).

Knight, P. L.

S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom-field state in the Jaynes-Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).
[CrossRef]

Lev, B. I.

B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, “Relativistic coherent states and charge structure of the coordinate and momentum operators,” Phys. Rev. A 66, 022115 (2002).
[CrossRef]

Liang, B.-L.

X.-G. Meng, J.-S. Wang, and B.-L. Liang, “The construction, properties and applications of a new bipartite coherent-entangled state in the two-mode Fock space,” Phys. Scr. 83, 025005 (2011).
[CrossRef]

Liao, Q.

Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
[CrossRef]

Liu, S.

Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
[CrossRef]

Liu, Z.

Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
[CrossRef]

Lo Franco, R.

R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Single-shot generation and detection of a two-photon generalized binomial state in a cavity,” Phys. Rev. A 74, 045803 (2006).
[CrossRef]

Luis, A.

P. M. Hernando and A. Luis, “Nonclassicality in phase-number uncertainty relations,” Phys. Rev. A 84, 063829 (2011).
[CrossRef]

Mahdifar, A.

A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
[CrossRef]

Malkin, I. A.

V. V. Dodonov, I. A. Malkin, and V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator,” Physica 72, 597–615 (1974).
[CrossRef]

Manko, V. I.

V. V. Dodonov, I. A. Malkin, and V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator,” Physica 72, 597–615 (1974).
[CrossRef]

Marte, P.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef]

Mathis, W.

X. Zou, K. Palhlke, and W. Mathis, “Phase measurement and generation of arbitrary superposition of Fock states,” Phys. Lett. A 323, 329–338 (2004).
[CrossRef]

Meekhof, D. M.

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
[CrossRef]

Meng, X.-G.

X.-G. Meng, J.-S. Wang, and B.-L. Liang, “The construction, properties and applications of a new bipartite coherent-entangled state in the two-mode Fock space,” Phys. Scr. 83, 025005 (2011).
[CrossRef]

Messina, A.

R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Single-shot generation and detection of a two-photon generalized binomial state in a cavity,” Phys. Rev. A 74, 045803 (2006).
[CrossRef]

Miry, S. R.

S. R. Miry, M. Shahpari, and M. K. Tavassoly, “Nonlinear elliptical states: generation and nonclassical properties,” Opt. Commun. 306, 49–56 (2013).

Molmer, K.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Monroe, C.

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
[CrossRef]

Moussa, M. H. Y.

C. J. Villas-Bas, Y. Guimares, M. H. Y. Moussa, and B. Baseia, “Recurrence formula for generalized optical state truncation by projection synthesis,” Phys. Rev. A 63, 055801 (2001).
[CrossRef]

M. H. Y. Moussa and B. Baseia, “Generation of the reciprocal-binomial state,” Phys. Lett. A 238, 223–226 (1998).
[CrossRef]

Moya-Cessa, H.

B. M. Rodriguez-Lara, H. Moya-Cessa, and A. B. Klimov, “Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser,” Phys. Rev. A 71, 023811 (2005).

Naderi, M. H.

A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
[CrossRef]

Napoli, A.

R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Single-shot generation and detection of a two-photon generalized binomial state in a cavity,” Phys. Rev. A 74, 045803 (2006).
[CrossRef]

Neergaard-Nielsen, J. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Nielsen, B. M.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Obada, A.-S. F.

M. S. Abdalla, A.-S. F. Obada, and M. Darwish, “Statistical properties of nonlinear intermediate states: binomial state,” J. Opt. B 7, S695–S704 (2005).
[CrossRef]

Palhlke, K.

X. Zou, K. Palhlke, and W. Mathis, “Phase measurement and generation of arbitrary superposition of Fock states,” Phys. Lett. A 323, 329–338 (2004).
[CrossRef]

Paris, M. G. A.

G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Generation of phase-coherent states,” Phys. Rev. A 57, 4894–4898 (1998).
[CrossRef]

Parkins, A. S.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef]

Pegg, D. T.

K. L. Pregnell and D. T. Pegg, “Single-shot measurement of quantum optical phase,” Phys. Rev. Lett. 89, 173601 (2002).
[CrossRef]

Penson, K. A.

J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems,” Phys. Rev. A 64, 013817 (2001).
[CrossRef]

Pfister, O.

N. K. Tran and O. Pfister, “Quantum teleportation with close-to-maximal entanglement from a beam splitter,” Phys. Rev. A 65, 052313 (2002).
[CrossRef]

Phoenix, S. J. D.

S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom-field state in the Jaynes-Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).
[CrossRef]

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404–2409 (1989).
[CrossRef]

Polzik, E. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

Pregnell, K. L.

K. L. Pregnell and D. T. Pegg, “Single-shot measurement of quantum optical phase,” Phys. Rev. Lett. 89, 173601 (2002).
[CrossRef]

Quang, T.

Raimond, J. M.

P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, “Photon number state generation with a single two-level atom in a cavity: a proposal,” Euro. Phys. J. 1, 1–4 (1998).
[CrossRef]

P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logmaic gate: the principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995).
[CrossRef]

Richter, Th.

A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
[CrossRef]

Rodriguez-Lara, B. M.

B. M. Rodriguez-Lara, H. Moya-Cessa, and A. B. Klimov, “Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser,” Phys. Rev. A 71, 023811 (2005).

Roknizadeh, R.

A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
[CrossRef]

Roversi, J. A.

A. Vidiella-Barranco and J. A. Roversi, “Statistical and phase properties of the binomial states of the electromagnetic field,” Phys. Rev. A 50, 5233–5241 (1994).
[CrossRef]

Sacchi, M. F.

G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Generation of phase-coherent states,” Phys. Rev. A 57, 4894–4898 (1998).
[CrossRef]

Saleh, B. E. A.

D. Stoler, B. E. A. Saleh, and M. C. Teich, “Binomial states of the quantized radiation field,” Opt. Acta 32, 345–355 (1985).
[CrossRef]

Sasaki, R.

H.-C. Fu and R. Sasaki, “Negative binomial and multinomial states: probability distributions and coherent states,” J. Math. Phys. 38, 3968–3987 (1997).
[CrossRef]

Semenov, A. A.

B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, “Relativistic coherent states and charge structure of the coordinate and momentum operators,” Phys. Rev. A 66, 022115 (2002).
[CrossRef]

Shahpari, M.

S. R. Miry, M. Shahpari, and M. K. Tavassoly, “Nonlinear elliptical states: generation and nonclassical properties,” Opt. Commun. 306, 49–56 (2013).

Simon, R.

R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).
[CrossRef]

Sivakumar, S.

S. Sivakumar, “Photon-added coherent states in parametric down-conversion,” Phys. Rev. A 83, 035802 (2011).
[CrossRef]

Sixdeniers, J.-M.

J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems,” Phys. Rev. A 64, 013817 (2001).
[CrossRef]

Solano, E.

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef]

Stoler, D.

D. Stoler, B. E. A. Saleh, and M. C. Teich, “Binomial states of the quantized radiation field,” Opt. Acta 32, 345–355 (1985).
[CrossRef]

D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
[CrossRef]

Sudarshan, E. C. G.

E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
[CrossRef]

Tavassoly, M. K.

S. R. Miry, M. Shahpari, and M. K. Tavassoly, “Nonlinear elliptical states: generation and nonclassical properties,” Opt. Commun. 306, 49–56 (2013).

Teich, M. C.

D. Stoler, B. E. A. Saleh, and M. C. Teich, “Binomial states of the quantized radiation field,” Opt. Acta 32, 345–355 (1985).
[CrossRef]

Tran, N. K.

N. K. Tran and O. Pfister, “Quantum teleportation with close-to-maximal entanglement from a beam splitter,” Phys. Rev. A 65, 052313 (2002).
[CrossRef]

Usenko, C. V.

B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, “Relativistic coherent states and charge structure of the coordinate and momentum operators,” Phys. Rev. A 66, 022115 (2002).
[CrossRef]

van Enk, S. J.

S. J. van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

Varoce, B. T. H.

S. Brattke, B. T. H. Varoce, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534–3537 (2001).
[CrossRef]

Vedral, V.

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

Vidiella-Barranco, A.

A. Vidiella-Barranco and J. A. Roversi, “Statistical and phase properties of the binomial states of the electromagnetic field,” Phys. Rev. A 50, 5233–5241 (1994).
[CrossRef]

Villas-Bas, C. J.

C. J. Villas-Bas, Y. Guimares, M. H. Y. Moussa, and B. Baseia, “Recurrence formula for generalized optical state truncation by projection synthesis,” Phys. Rev. A 63, 055801 (2001).
[CrossRef]

Vogel, W.

A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
[CrossRef]

R. L. de Mathos Filho and W. Vogel, “Even and odd coherent states of the motion of a trapped ion,” Phys. Rev. Lett. 76, 608–611 (1996).
[CrossRef]

Walther, H.

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef]

S. Brattke, B. T. H. Varoce, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534–3537 (2001).
[CrossRef]

Wang, J.

Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
[CrossRef]

Wang, J.-S.

X.-G. Meng, J.-S. Wang, and B.-L. Liang, “The construction, properties and applications of a new bipartite coherent-entangled state in the two-mode Fock space,” Phys. Scr. 83, 025005 (2011).
[CrossRef]

Wang, X.

X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
[CrossRef]

Wang, Y.

Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
[CrossRef]

Wineland, D. J.

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Yuen, H. P.

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976).
[CrossRef]

Zheng, S.-B.

S.-B. Zheng, “Generation of nonclassical states with a driven dispersive interaction,” Phys. Rev. A 74, 043803 (2006).
[CrossRef]

S.-B. Zheng, “Preparation of superpositions of Fock states via the interaction of a multi-level atom with the field,” Opt. Commun. 154, 290–292 (1998).
[CrossRef]

Zoller, P.

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef]

Zou, X.

X. Zou, K. Palhlke, and W. Mathis, “Phase measurement and generation of arbitrary superposition of Fock states,” Phys. Lett. A 323, 329–338 (2004).
[CrossRef]

Euro. Phys. J. (1)

P. Domokos, M. Brune, J. M. Raimond, and S. Haroche, “Photon number state generation with a single two-level atom in a cavity: a proposal,” Euro. Phys. J. 1, 1–4 (1998).
[CrossRef]

J. Math. Phys. (2)

J. R. Klauder, “Continuous-representation theory. I. Postulates of continuous-representation theory,” J. Math. Phys. 4, 1055 (1963).
[CrossRef]

H.-C. Fu and R. Sasaki, “Negative binomial and multinomial states: probability distributions and coherent states,” J. Math. Phys. 38, 3968–3987 (1997).
[CrossRef]

J. Mod. Opt. (1)

C. C. Gerry and R. Grobe, “Two-mode SU(2) and SU(2) Schrödinger cat states,” J. Mod. Opt. 44, 41–53 (1997).
[CrossRef]

J. Opt. B (2)

M. S. Abdalla, A.-S. F. Obada, and M. Darwish, “Statistical properties of nonlinear intermediate states: binomial state,” J. Opt. B 7, S695–S704 (2005).
[CrossRef]

G. S. Agarwal and A. Biswas, “Quantitative measures of entanglement in pair-coherent states,” J. Opt. B 7, 350–354 (2005).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Acta (1)

D. Stoler, B. E. A. Saleh, and M. C. Teich, “Binomial states of the quantized radiation field,” Opt. Acta 32, 345–355 (1985).
[CrossRef]

Opt. Commun. (3)

S. R. Miry, M. Shahpari, and M. K. Tavassoly, “Nonlinear elliptical states: generation and nonclassical properties,” Opt. Commun. 306, 49–56 (2013).

Y. Wang, Q. Liao, Z. Liu, J. Wang, and S. Liu, “Nonclassical properties of odd and even elliptical states,” Opt. Commun. 284, 282–288 (2011).
[CrossRef]

S.-B. Zheng, “Preparation of superpositions of Fock states via the interaction of a multi-level atom with the field,” Opt. Commun. 154, 290–292 (1998).
[CrossRef]

Phys. Lett. A (3)

A. Benmoussa and C. C. Gerry, “Proposal for generating Fock states in traveling wave fields,” Phys. Lett. A 365, 258–261 (2007).

M. H. Y. Moussa and B. Baseia, “Generation of the reciprocal-binomial state,” Phys. Lett. A 238, 223–226 (1998).
[CrossRef]

X. Zou, K. Palhlke, and W. Mathis, “Phase measurement and generation of arbitrary superposition of Fock states,” Phys. Lett. A 323, 329–338 (2004).
[CrossRef]

Phys. Rev. (1)

J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963).
[CrossRef]

Phys. Rev. A (22)

S. J. van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001).
[CrossRef]

X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001).
[CrossRef]

N. B. An, “Teleportation of coherent-state superpositions within a network,” Phys. Rev. A 68, 022321 (2003).
[CrossRef]

J. Janszky, P. Domokos, and P. Adam, “Coherent states on a circle and quantum interference,” Phys. Rev. A 48, 2213–2219 (1993).
[CrossRef]

H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976).
[CrossRef]

B. I. Lev, A. A. Semenov, C. V. Usenko, and J. R. Klauder, “Relativistic coherent states and charge structure of the coordinate and momentum operators,” Phys. Rev. A 66, 022115 (2002).
[CrossRef]

J. R. Klauder, K. A. Penson, and J.-M. Sixdeniers, “Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems,” Phys. Rev. A 64, 013817 (2001).
[CrossRef]

A. Mahdifar, W. Vogel, Th. Richter, R. Roknizadeh, and M. H. Naderi, “Coherent states of a harmonic oscillator on a sphere in the motion of a trapped ion,” Phys. Rev. A 78, 063814 (2008).
[CrossRef]

S. Sivakumar, “Photon-added coherent states in parametric down-conversion,” Phys. Rev. A 83, 035802 (2011).
[CrossRef]

N. K. Tran and O. Pfister, “Quantum teleportation with close-to-maximal entanglement from a beam splitter,” Phys. Rev. A 65, 052313 (2002).
[CrossRef]

C. J. Villas-Bas, Y. Guimares, M. H. Y. Moussa, and B. Baseia, “Recurrence formula for generalized optical state truncation by projection synthesis,” Phys. Rev. A 63, 055801 (2001).
[CrossRef]

J. Fiurasek, “Conditional generation of N-photon entangled states of light,” Phys. Rev. A 65, 053818 (2002).
[CrossRef]

P. M. Hernando and A. Luis, “Nonclassicality in phase-number uncertainty relations,” Phys. Rev. A 84, 063829 (2011).
[CrossRef]

S.-B. Zheng, “Generation of nonclassical states with a driven dispersive interaction,” Phys. Rev. A 74, 043803 (2006).
[CrossRef]

G. M. D’Ariano, M. G. A. Paris, and M. F. Sacchi, “Generation of phase-coherent states,” Phys. Rev. A 57, 4894–4898 (1998).
[CrossRef]

R. Lo Franco, G. Compagno, A. Messina, and A. Napoli, “Single-shot generation and detection of a two-photon generalized binomial state in a cavity,” Phys. Rev. A 74, 045803 (2006).
[CrossRef]

S. M. Barnett and S. J. D. Phoenix, “Entropy as a measure of quantum optical correlation,” Phys. Rev. A 40, 2404–2409 (1989).
[CrossRef]

S. J. D. Phoenix and P. L. Knight, “Establishment of an entangled atom-field state in the Jaynes-Cummings model,” Phys. Rev. A 44, 6023–6029 (1991).
[CrossRef]

B. M. Rodriguez-Lara, H. Moya-Cessa, and A. B. Klimov, “Combining Jaynes-Cummings and anti-Jaynes-Cummings dynamics in a trapped-ion system driven by a laser,” Phys. Rev. A 71, 023811 (2005).

S. Bose and V. Vedral, “Mixedness and teleportation,” Phys. Rev. A 61, 040101(R) (2000).
[CrossRef]

P. Domokos, J. M. Raimond, M. Brune, and S. Haroche, “Simple cavity-QED two-bit universal quantum logmaic gate: the principle and expected performances,” Phys. Rev. A 52, 3554–3559 (1995).
[CrossRef]

A. Vidiella-Barranco and J. A. Roversi, “Statistical and phase properties of the binomial states of the electromagnetic field,” Phys. Rev. A 50, 5233–5241 (1994).
[CrossRef]

Phys. Rev. D (1)

D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970).
[CrossRef]

Phys. Rev. Lett. (11)

E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963).
[CrossRef]

S. Brattke, B. T. H. Varoce, and H. Walther, “Generation of photon number states on demand via cavity quantum electrodynamics,” Phys. Rev. Lett. 86, 3534–3537 (2001).
[CrossRef]

D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996).
[CrossRef]

A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, “Synthesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence,” Phys. Rev. Lett. 71, 3095–3098 (1993).
[CrossRef]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[CrossRef]

K. L. Pregnell and D. T. Pegg, “Single-shot measurement of quantum optical phase,” Phys. Rev. Lett. 89, 173601 (2002).
[CrossRef]

R. L. de Mathos Filho and W. Vogel, “Even and odd coherent states of the motion of a trapped ion,” Phys. Rev. Lett. 76, 608–611 (1996).
[CrossRef]

M. J. Collett, “Generation of number-phase squeezed states,” Phys. Rev. Lett. 70, 3400–3403 (1993).
[CrossRef]

E. Solano, G. S. Agarwal, and H. Walther, “Strong-driving-assisted multipartite entanglement in cavity QED,” Phys. Rev. Lett. 90, 027903 (2003).
[CrossRef]

R. Simon, “Peres-Horodecki separability criterion for continuous variable systems,” Phys. Rev. Lett. 84, 2726–2729 (2000).
[CrossRef]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Phys. Scr. (1)

X.-G. Meng, J.-S. Wang, and B.-L. Liang, “The construction, properties and applications of a new bipartite coherent-entangled state in the two-mode Fock space,” Phys. Scr. 83, 025005 (2011).
[CrossRef]

Physica (1)

V. V. Dodonov, I. A. Malkin, and V. I. Manko, “Even and odd coherent states and excitations of a singular oscillator,” Physica 72, 597–615 (1974).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

Schematic setup that describes the JC- and anti-JC-like interactions of a single two-level atom with a quantized cavity and classical fields. In the first interval of time (τ1), the JC interaction occurs: ωωL(t)=δ, (δ=2Ω, ω0(t)=ω0, ωL(t)=ωL) and in the subsequent time interval (τ2) the anti-JC interaction occurs: ωωL(t)=δ(ω0(t)=ω0+4Ω,ωL(t)=ωL+4Ω).

Fig. 2.
Fig. 2.

Linear entropy as a function of η. Dotted line (black) is plotted for N=2, dashed line (blue) is plotted for N=4, continuous line (pink) for N=6, and dotted–dashed (green) line for N=8.

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

|ΨI=C0|0+C1|1++CN|N,
|ΨII=C0|0,N+C1|1,N1++CN|N,0.
H^=ω0j=1Nσ^jσ^j+ωa^a^+Ωj=1N(eiωLtσ^j+eiωLtσ^j)+gj=1N(σ^ja^+σ^ja^),
H^I=g2j=1N(|+jj+||jj|+e2iΩt|+jj|e2iΩt|jj+|)a^eiδt+H.C.,
H^(+)=g2j=1N(|+jj|a^+|jj+|a^),
H^()=g2j=1N(|jj+|a^+|+jj|a^).
H^ab(+)=2j=1N(|+jj|(gaa^+gbb^)+|jj+|(gaa^+gbb^)),
H^ab()=2j=1N(|jj+|(gaa^+gbb^)+|+jj|(gaa^+gbb^)),
U^(+)(τ)=(C(n^+1,τ)iS(n^+1,τ)a^ia^S(n^+1,τ)C(n^,τ)),
C(n^,τ)=cos(n^gτ/2),S(n^,τ)=sin(n^gτ/2)n^.
|ψ1=U^(+)(τ1)|ψ(0)=cos(gτ1/2)|0|+isin(gτ1/2)|1|.
|neinωLτ1|n,|g|g,|eeiω0τ1|e.
|ψ1s=[cos(gτ1/2)eiΩτ1|0isin(gτ1/2)eiΩτ1eiωτ1|1]|g+eiω0τ1[cos(gτ1/2)eiΩτ1|0+isin(gτ1/2)eiΩτ1eiωτ1|1]|e.
ω0ω0+4Ω,ωLωL+4Ω.
U^()(τ)=(C(n^,τ)ia^S(n^+1,τ)iS(n^+1,τ)a^C(n^+1,τ)),
|ψ2=U^()(τ2)|ψ1=cos(gτ1/2)|0|+isin(gτ1/2)cos(2gτ2/2)|1|sin(gτ1/2)sin(2gτ2/2)|2|+.
|ψ2s=[cos(gτ1/2)eiΩτ2|0isin(gτ1/2)cos(2gτ2/2)eiΩτ2eiωτ2|1sin(gτ1/2)sin(2gτ2/2)eiΩτ2e2iωτ2|2]|g+ei(ω0+4Ω)τ2[cos(gτ1/2)eiΩτ2|0+isin(gτ1/2)cos(2gτ2/2)eiΩτ2eiωτ2|1sin(gτ1/2)sin(2gτ2/2)eiΩτ2e2iωτ2|2]|e.
|ψ3=U^(+)(τ3)|ψ2=(cos(gτ1/2)cos(gτ3/2)sin(gτ1/2)cos(2gτ2/2)sin(gτ3/2))|+|0i(cos(gτ1/2)sin(gτ3/2)+sin(gτ1/2)cos(2gτ2/2)cos(gτ3/2))||1sin(gτ1/2)sin(2gτ2/2)cos(3gτ3/2)|+|2+isin(gτ1/2)sin(2gτ2/2)sin(3gτ3/2)||3.
|η,N=n=0N[(Nn)ηn(1η)Nn]1/2|n,0<η<1,
η,N=n=0N[(Nn)ηn(1η)Nn]1/2|n,Nn.
U^ab(+)(τ)=(C1(A^,τ)iS(A^,τ)A^iA^S(A^,τ)C2(A^,τ)),
C1(A^,τ)=cos(A^A^gτ/2),C2(A^,τ)=cos(A^A^gτ/2),S(A^,τ)=sin(A^A^gτ/2)A^A^.
|ψ1=U^ab(+)(τ1)|ψ(0)=cos(gτ1/2)|0,0|+isin(gτ1/2)(η|1,0+1η|0,1)|.
|ψ1s=|g[cos(gτ1/2)2eiΩτ1|0,0isin(gτ1/2)2eiΩτ1eiωτ1(η|1,0+1η|0,1)]+eiω0τ1|e[cos(gτ1/2)2eiΩτ1|0,0+isin(gτ1/2)2eiΩτ1eiωτ1(η|1,0+1η|0,1)].
|ψ1(π/g)s=[i2eiΩπ/geiωπ/g×(η|1,0+1η|0,1)]|g+eiω0π/g[i2eiΩπ/geiωπ/g×(η|1,0+1η|0,1)]|e.
U^ab()(τ)=(C2(A^,τ)iA^S(A^,τ)iS(A^,τ)A^C1(A^,τ)),
U^ab()(τ2)|ψ1(π/g)=sin(2gτ2/2)×[η|2,0+2η(1η)|1,1+(1η)|0,2]|+icos(2gτ2/2)[η|1,0+(1η)|0,1]|,
|ψ2=(η|2,0+2η(1η)|1,1+(1η)|0,2)|+.
U^ab(+)(τ3)|ψ2=cos(3gτ3/2)×[η|2,0+2η(1η)|1,1+(1η)|0,2]|++isin(3gτ3/2)[η3|3,0+3η2(1η)|2,1+3η(1η)2|1,2+(1η)3|0,3]|.
|ψ3=[η3|3,0+3η2(1η)|2,1+3η(1η)2|1,2+(1η)3|0,3]|,
S=1Trρ2,
Cn(η,N)=[(Nn)ηn(1η)Nn]1/2.
S=1n=0N[Cn2(η,N)]2=1n=0N[(Nn)ηn(1η)Nn]2.

Metrics