Abstract

A hologram recorded in CaF2 crystal with color centers changes its nature (amplitude, phase, or amplitude-phase), profile, and diffraction efficiency under the impact of incoherent illumination and heating. The character of the amplitude-phase gratings in this crystal can be either in-phase or antiphase. These cases can be differentiated by analysis of the angular dependencies of the hologram diffraction responses. Owing to the diffusion-drift mechanism of hologram recording, tough photo-thermal treatment does not result in noticeable hologram decay. Incoherent photo-thermal treatment enables the formation of highly stable volume holograms that can be read out in visible, near- and mid-IR spectral ranges.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, “Postexposure sensitization of holograms on the basis of color centers in CaF2 crystals by incoherent radiation,” Opt. Spectrosc. 104, 935–939 (2008).
    [CrossRef]
  2. A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
    [CrossRef]
  3. A. E. Angervaks, A. S. Shcheulin, and A. I. Ryskin, “Convertible holograms in CaF2 crystals with color centers,” Proc. SPIE 8776, 877604 (2013).
    [CrossRef]
  4. A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
    [CrossRef]
  5. A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
    [CrossRef]
  6. L. Carretero, R. F. Madrigal, A. Fimia, S. Blaya, and A. Beléndez, “Study of angular responses of mixed amplitude-phase holographic gratings: shifted Borrmann effect,” Opt. Lett. 26, 786–788 (2001).
    [CrossRef]
  7. A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Profile of a volume hologram in CaF2 crystal with color centers as determined using confocal scanning microscopy,” J. Opt. Soc. Am. B 29, 335–339 (2012).
    [CrossRef]
  8. Y. Shiga and C. Egami, “Shift-multiplexed microhologram fabrication with photoisomeric chromophores,” Appl. Opt. 51, 2847–2855 (2012).
    [CrossRef]
  9. W. Hayes, ed. Crystals with the Fluorite Structure: Electronic, Vibrational, and Defect Properties (Clarendon, 1974).
  10. R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
    [CrossRef]
  11. A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
    [CrossRef]
  12. A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Transformation of color centers at hologram recording in additively colored CaF2 crystal,” Opt. Spectrosc.116 (to be published).
  13. V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).
  14. A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).
  15. A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
    [CrossRef]
  16. A. S. Shcheulin, “Holographic media based on photochromic calcium fluoride and cadmium fluoride crystals,” Doctoral Dissertation. (University ITMO, 2008).
  17. M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis,” Opt. Express 16, 6528–6536 (2008).
    [CrossRef]
  18. M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis: erratum,” Opt. Express 17, 23350 (2009).
    [CrossRef]
  19. C. Neipp, I. Pascual, and A. Beléndez, “Experimental evidence of mixed gratings with a phase difference between the phase and amplitude grating in volume holograms,” Opt. Express 10, 1374–1383 (2002).
    [CrossRef]
  20. For Holograms 1–3, one compares the refractive-index profiles, whereas for the comparison of the profiles of Holograms 1 and 4, the data of luminescent confocal scanning microscopy are used. As was stated above, in essence, the two techniques of profile determination give similar results.
  21. Alternatively, a new holographic grating with similar period can be recorded within the same crystal bulk, thus erasing the previous hologram. In this case, the recording time for the superimposing hologram should be not less than the recording time of the previous hologram.
  22. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
    [CrossRef]
  23. V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
    [CrossRef]
  24. A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
    [CrossRef]
  25. A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
    [CrossRef]

2013 (2)

A. E. Angervaks, A. S. Shcheulin, and A. I. Ryskin, “Convertible holograms in CaF2 crystals with color centers,” Proc. SPIE 8776, 877604 (2013).
[CrossRef]

A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
[CrossRef]

2012 (4)

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
[CrossRef]

A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Profile of a volume hologram in CaF2 crystal with color centers as determined using confocal scanning microscopy,” J. Opt. Soc. Am. B 29, 335–339 (2012).
[CrossRef]

Y. Shiga and C. Egami, “Shift-multiplexed microhologram fabrication with photoisomeric chromophores,” Appl. Opt. 51, 2847–2855 (2012).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
[CrossRef]

2011 (2)

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

2010 (1)

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

2009 (2)

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis: erratum,” Opt. Express 17, 23350 (2009).
[CrossRef]

2008 (2)

M. Fally, M. Ellabban, and I. Drevenšek-Olenik, “Out-of-phase mixed holographic gratings: a quantitative analysis,” Opt. Express 16, 6528–6536 (2008).
[CrossRef]

A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, “Postexposure sensitization of holograms on the basis of color centers in CaF2 crystals by incoherent radiation,” Opt. Spectrosc. 104, 935–939 (2008).
[CrossRef]

2007 (2)

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

2002 (1)

2001 (1)

1999 (2)

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Angervaks, A. E.

A. E. Angervaks, A. S. Shcheulin, and A. I. Ryskin, “Convertible holograms in CaF2 crystals with color centers,” Proc. SPIE 8776, 877604 (2013).
[CrossRef]

A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
[CrossRef]

A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Profile of a volume hologram in CaF2 crystal with color centers as determined using confocal scanning microscopy,” J. Opt. Soc. Am. B 29, 335–339 (2012).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Transformation of color centers at hologram recording in additively colored CaF2 crystal,” Opt. Spectrosc.116 (to be published).

Beléndez, A.

Belous, V. M.

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).

Blaya, S.

Carretero, L.

Drevenšek-Olenik, I.

Egami, C.

Ellabban, M.

Fally, M.

Fedorov, P. P.

A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

Fimia, A.

Gainutdinov, R. V.

A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

Granovskii, V. A.

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

Koklyushkin, A. V.

A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, “Postexposure sensitization of holograms on the basis of color centers in CaF2 crystals by incoherent radiation,” Opt. Spectrosc. 104, 935–939 (2008).
[CrossRef]

Koryakina, L. F.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Korzinin, Y. L.

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

Kudryavtsev, M. D.

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

Kupchikov, A. K.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Madrigal, R. F.

Mandel, V. E.

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

Neipp, C.

Pascual, I.

Petrova, M. A.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Popov, A. Y.

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).

Ryskin, A. I.

A. E. Angervaks, A. S. Shcheulin, and A. I. Ryskin, “Convertible holograms in CaF2 crystals with color centers,” Proc. SPIE 8776, 877604 (2013).
[CrossRef]

A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
[CrossRef]

A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Profile of a volume hologram in CaF2 crystal with color centers as determined using confocal scanning microscopy,” J. Opt. Soc. Am. B 29, 335–339 (2012).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, “Postexposure sensitization of holograms on the basis of color centers in CaF2 crystals by incoherent radiation,” Opt. Spectrosc. 104, 935–939 (2008).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Transformation of color centers at hologram recording in additively colored CaF2 crystal,” Opt. Spectrosc.116 (to be published).

Semenova, T. S.

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

Shcheulin, A. S.

A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
[CrossRef]

A. E. Angervaks, A. S. Shcheulin, and A. I. Ryskin, “Convertible holograms in CaF2 crystals with color centers,” Proc. SPIE 8776, 877604 (2013).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
[CrossRef]

A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Profile of a volume hologram in CaF2 crystal with color centers as determined using confocal scanning microscopy,” J. Opt. Soc. Am. B 29, 335–339 (2012).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, “Postexposure sensitization of holograms on the basis of color centers in CaF2 crystals by incoherent radiation,” Opt. Spectrosc. 104, 935–939 (2008).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

A. S. Shcheulin, “Holographic media based on photochromic calcium fluoride and cadmium fluoride crystals,” Doctoral Dissertation. (University ITMO, 2008).

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Transformation of color centers at hologram recording in additively colored CaF2 crystal,” Opt. Spectrosc.116 (to be published).

Shiga, Y.

Shugailo, Y. B.

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).

Tsygankova, E. V.

A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, “Postexposure sensitization of holograms on the basis of color centers in CaF2 crystals by incoherent radiation,” Opt. Spectrosc. 104, 935–939 (2008).
[CrossRef]

Tyurin, A. V.

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

Veniaminov, A. V.

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
[CrossRef]

A. V. Veniaminov, A. S. Shcheulin, A. E. Angervaks, and A. I. Ryskin, “Profile of a volume hologram in CaF2 crystal with color centers as determined using confocal scanning microscopy,” J. Opt. Soc. Am. B 29, 335–339 (2012).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Transformation of color centers at hologram recording in additively colored CaF2 crystal,” Opt. Spectrosc.116 (to be published).

Zakharov, V. V.

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Transformation of color centers at hologram recording in additively colored CaF2 crystal,” Opt. Spectrosc.116 (to be published).

Appl. Opt. (1)

Appl. Surf. Sci. (1)

A. E. Angervaks, A. S. Shcheulin, A. I. Ryskin, P. P. Fedorov, and R. V. Gainutdinov, “Two-dimensional metal nano-particles and layers in dielectric calcium fluoride crystals,” Appl. Surf. Sci. 267, 112–114 (2013).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (1)

Opt. Spectrosc. (9)

A. S. Shcheulin, A. V. Koklyushkin, E. V. Tsygankova, and A. I. Ryskin, “Postexposure sensitization of holograms on the basis of color centers in CaF2 crystals by incoherent radiation,” Opt. Spectrosc. 104, 935–939 (2008).
[CrossRef]

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Dependence of the profile of a hologram recorded on color centers in a CaF2 crystal on the type of hologram-forming centers,” Opt. Spectrosc. 113, 638–642 (2012).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. K. Kupchikov, and A. I. Ryskin, “Additive coloration of crystals of calcium and cadmium fluorides,” Opt. Spectrosc. 103, 660–664 (2007).
[CrossRef]

A. S. Shcheulin, T. S. Semenova, L. F. Koryakina, M. A. Petrova, A. E. Angervaks, and A. I. Ryskin, “Additive coloring rate and intensity for pure and doped fluorite crystals,” Opt. Spectrosc. 110, 617–623 (2011).
[CrossRef]

V. M. Belous, V. E. Mandel, A. Y. Popov, and A. V. Tyurin, “Mechanism of holographic recording based on photothermal transformation of color centers in additively colored alkali halide crystals,” Opt. Spectrosc. 87, 305–310 (1999).

V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: I. Principle of operation and experimental implementation,” Opt. Spectrosc. 106, 774–781 (2009).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: II. Method of measurement of reproducible angles,” Opt. Spectrosc. 108, 824–830 (2010).
[CrossRef]

A. E. Angervaks, V. A. Granovskii, M. D. Kudryavtsev, A. I. Ryskin, and A. S. Shcheulin, “Holographic prism as a new optical element: III. Experimental implementation of a holographic prism of modification II and comparative characterization of the two holographic prism modifications from the application point of view,” Opt. Spectrosc. 112, 312–317 (2012).
[CrossRef]

A. S. Shcheulin, A. V. Veniaminov, Y. L. Korzinin, A. E. Angervaks, and A. I. Ryskin, “A highly stable holographic medium based on CaF2:Na crystals with colloidal color centers: III. Properties of holograms,” Opt. Spectrosc. 103, 655–659 (2007).
[CrossRef]

Phys. Solid State (1)

R. V. Gainutdinov, A. S. Shcheulin, P. P. Fedorov, A. E. Angervaks, and A. I. Ryskin, “Two-dimensional metal inclusions in a dielectric crystal,” Phys. Solid State 53, 1484–1491 (2011).
[CrossRef]

Proc. SPIE (2)

A. Y. Popov, V. M. Belous, V. E. Mandel, Y. B. Shugailo, and A. V. Tyurin, “Drift model of photoinduced processes in alkali-halide crystals during volume hologram recording,” Proc. SPIE 3904, 195–200 (1999).

A. E. Angervaks, A. S. Shcheulin, and A. I. Ryskin, “Convertible holograms in CaF2 crystals with color centers,” Proc. SPIE 8776, 877604 (2013).
[CrossRef]

Other (5)

W. Hayes, ed. Crystals with the Fluorite Structure: Electronic, Vibrational, and Defect Properties (Clarendon, 1974).

A. S. Shcheulin, A. E. Angervaks, A. V. Veniaminov, V. V. Zakharov, and A. I. Ryskin, “Transformation of color centers at hologram recording in additively colored CaF2 crystal,” Opt. Spectrosc.116 (to be published).

For Holograms 1–3, one compares the refractive-index profiles, whereas for the comparison of the profiles of Holograms 1 and 4, the data of luminescent confocal scanning microscopy are used. As was stated above, in essence, the two techniques of profile determination give similar results.

Alternatively, a new holographic grating with similar period can be recorded within the same crystal bulk, thus erasing the previous hologram. In this case, the recording time for the superimposing hologram should be not less than the recording time of the previous hologram.

A. S. Shcheulin, “Holographic media based on photochromic calcium fluoride and cadmium fluoride crystals,” Doctoral Dissertation. (University ITMO, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Absorption spectra of CaF2 sample with color centers before (solid line) and after recording of Hologram 1 (dotted line).

Fig. 2.
Fig. 2.

Absorption spectra of the samples with Holograms 25 (a), and the spectrum of the sample with Hologram 2 in the extended wavelength range (b).

Fig. 3.
Fig. 3.

Angular dependencies of the zero (dashed line) and the +1st (solid line) diffraction efficiency orders for Hologram 1 (a) and Hologram 3 (b) read out at 532 nm.

Fig. 4.
Fig. 4.

Profiles of the absorption constant and the refractive index modulation along the grating vector of Hologram 3 (solid and dashed lines, respectively), based on measured angular dependencies of zero and nonzero orders diffraction efficiency at 532 nm.

Fig. 5.
Fig. 5.

Refractive-index profiles of Hologram 1 (dotted line), Hologram 2 (solid line), and Hologram 3 (dashed line) as reconstructed from the angular dependencies of diffraction response at 532 nm. The half-widths of the profiles are 1.00 μm (Hologram 1), 0.65 μm (Hologram 2), and 0.70 μm (Hologram 3).

Fig. 6.
Fig. 6.

Angular dependencies of the zero-order diffraction efficiency of Hologram 1 (a) and Hologram 2 (b) at 532 nm readout. The tilt and curvature of the background line is because of the inhomogeneity of the photodiode sensitivity and the displacement of the readout beam over its surface.

Fig. 7.
Fig. 7.

Profiles of the luminescence intensity along the grating vector of Hologram 1 (solid line) and Hologram 4 (dashed line), extracted from images obtained using confocal scanning microscope.

Fig. 8.
Fig. 8.

Luminescent 3D image of a 45μm×45μm×22μm area of the holographic grating in the sample with Hologram 4 captured using the confocal scanning microscope. Excitation wavelength is 514.5 nm; luminescence acquired in the range of 590–720 nm. The equidistant filled planes depict the locations of color centers.

Fig. 9.
Fig. 9.

Angular dependencies of diffraction efficiencies of +1 (a), +2 (b), and +3 (c) orders of Hologram 5 at the 532 nm readout (solid lines) and corresponding zero orders (dashed lines).

Tables (1)

Tables Icon

Table 1. Sample Treatment Parameters and Holograms Characteristics

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R=12exp(dαcr)[exp(dα12cr)+exp(dα12cr)],
S=12exp(dαcr)[exp(dα12cr)exp(dα12cr)],

Metrics