Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Multi-qubit quantum phase gates based on surface plasmons of a nanosphere

Not Accessible

Your library or personal account may give you access

Abstract

The Dicke subradiance and superradiance resulting from the interaction between surface plasmons of a nanosphere and an ensemble of quantum emitters have been investigated using a Green’s function approach. Based on such an investigation, we propose a scheme for a deterministic multi-qubit quantum phase gate. As an example, two-qubit, three-qubit, and four-qubit quantum phase gates have been designed and analyzed in detail. Phenomena due to the losses in the metal are discussed. Potential applications of these phenomena to quantum-information processing are anticipated.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Tunable superradiance and quantum phase gate based on graphene wrapped nanowire

Weixuan Zhang, Jun Ren, and Xiangdong Zhang
Opt. Express 23(17) 22347-22361 (2015)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved