Abstract

The LBO crystal polished by the chemical mechanical polishing process has a great number of CeO2 particles, with micrometer or submicrometer size, and SiO2 particles, with the size of several tens of nanometers, that remain buried in the polishing surface layer. These particles absorb the UV laser at 355 nm and seriously affect the resistance of the LBO crystal to UV laser damage. Based on Mie scattering theory, this paper analyzes the enhancement effect on the incident electric field because of the residual polishing particles in the polishing layer of the LBO crystal and establishes the difference equations for studying the unsteady heat transfer condition of the absorption core. For the residual CeO2 particles buried in the polishing layer of the LBO crystal, when the particle size is between 200 and 300 nm, the electric field intensity under 355 nm UV laser irradiation will enhance about 2.5–3 times, and the corresponding optical intensity will enhance 6–9 times. Using the unsteady heat transfer equation, the result indicates that when the particle size is between 300 and 700 nm, the particles that absorb the laser under 355 nm UV laser irradiation will cause the strongest transient thermal effect. The particles with sizes in this range cause the most serious destructive effect due to heat absorption, and relatively low UV laser intensity would result in damage to the LBO crystal.

© 2014 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [CrossRef]
  2. N. Bloembergen, “Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,” Appl. Opt. 12, 661–664 (1973).
    [CrossRef]
  3. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
    [CrossRef]
  4. L. Gallais, P. Voarino, C. Amra, “Optical measurement of size and complex index of laser-damage precursors: the inverse problem,” J. Opt. Soc. Am. B 21, 1073–1080 (2004).
    [CrossRef]
  5. L. Gallais, M. Commandré, “Simultaneous absorption, scattering, and luminescence mappings for the characterization of optical coatings and surfaces,” Appl. Opt. 45, 1416–1424 (2006).
    [CrossRef]
  6. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351  nm,” Opt. Express 13, 10163–10171 (2005).
    [CrossRef]
  7. M. D. Feit, A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2003).
  8. B. Choa, A. Lyua, M. Feldman, “Laser-induced damage resistance of UV coatings on fused silica and CaF2,” Proc. SPIE 8530, 853029 (2012).
  9. X. Gao, G. Feng, J. Han, N. Chen, C. Tang, S. Zhou, “Investigation of laser-induced damage by nanoabsorbers at the surface of fused silica,” Appl. Opt. 51, 2463–2468 (2012).
    [CrossRef]
  10. X. Gao, G. Feng, J. Han, L. Zhai, “Investigation of laser-induced damage by various initiators on the subsurface of fused silica,” Opt. Express 20, 22095–22101 (2012).
    [CrossRef]
  11. M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).
  12. H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  13. W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. 19, 1505–1509 (1980).
    [CrossRef]
  14. H. Hong, Q. Liu, L. Huang, M. Gong, “Improvement and formation of UV-induced damage on LBO crystal surface during long-term high-power third-harmonic generation,” Opt. Express 21, 7285–7293 (2013).
    [CrossRef]

2013 (1)

2012 (3)

2006 (1)

2005 (1)

2004 (1)

2003 (1)

M. D. Feit, A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2003).

1998 (1)

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

1997 (1)

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

1980 (1)

1974 (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

1973 (1)

Amra, C.

Bercegol, H.

Birolleau, J.-C.

Bloembergen, N.

Camp, D. W.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

Carr, J.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

Chen, N.

Choa, B.

B. Choa, A. Lyua, M. Feldman, “Laser-induced damage resistance of UV coatings on fused silica and CaF2,” Proc. SPIE 8530, 853029 (2012).

Commandré, M.

Dovik, M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Feit, M. D.

M. D. Feit, A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2003).

Feldman, M.

B. Choa, A. Lyua, M. Feldman, “Laser-induced damage resistance of UV coatings on fused silica and CaF2,” Proc. SPIE 8530, 853029 (2012).

Feng, G.

Gallais, L.

Gao, X.

Gong, M.

Han, J.

Hong, H.

Huang, L.

Hutcheon, I.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

Kozlowski, M. R.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

Lamaignere, L.

Liu, Q.

Lyua, A.

B. Choa, A. Lyua, M. Feldman, “Laser-induced damage resistance of UV coatings on fused silica and CaF2,” Proc. SPIE 8530, 853029 (2012).

Michaels, M. A.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Neauport, J.

Pilon, F.

Raether, R. G.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Rubenchik, A. M.

M. D. Feit, A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2003).

Sheehan, L. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

Tang, C.

Thomas, I. M.

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Torres, R. A.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

Van de Hulst, H. C.

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Voarino, P.

Wiscombe, W. J.

Ying, M.

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

Zhai, L.

Zhou, S.

Appl. Opt. (4)

IEEE J. Quantum Electron. (1)

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Proc. SPIE (4)

M. D. Feit, A. M. Rubenchik, “Influence of subsurface cracks on laser induced surface damage,” Proc. SPIE 5273, 264–272 (2003).

B. Choa, A. Lyua, M. Feldman, “Laser-induced damage resistance of UV coatings on fused silica and CaF2,” Proc. SPIE 8530, 853029 (2012).

M. R. Kozlowski, J. Carr, I. Hutcheon, R. A. Torres, L. M. Sheehan, D. W. Camp, M. Ying, “Depth profiling of polishing-induced contamination on fused silica surface,” Proc. SPIE 3244, 365–375 (1997).

D. W. Camp, M. R. Kozlowski, L. M. Sheehan, M. A. Michaels, M. Dovik, R. G. Raether, I. M. Thomas, “Subsurface damage and polishing compound affect the 355-nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Other (1)

H. C. Van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Constituent elements of LBO surface polished by CMP method.

Fig. 2.
Fig. 2.

Absorption cross section and the absorption efficiency factor of CeO 2 particles versus the particle’s diameter.

Fig. 3.
Fig. 3.

Curves of the temperature of LBO crystal surrounding the CeO 2 particle with various particle diameters.

Fig. 4.
Fig. 4.

Temporal evolution curve of temperature of CeO 2 particle and LBO crystal under the irradiation of 355 nm UV laser pulse (the unit of temperature is K).

Fig. 5.
Fig. 5.

Unsteady evolution curve of the maximum temperature of LBO crystal surrounding the particle as the particle diameter varies.

Tables (1)

Tables Icon

Table 1. Refractive Index and Thermodynamic Parameters of LBO Crystal and CeO 2 Particles [10]

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Q ext = 2 x 2 n = 1 N max ( 2 n + 1 ) Re ( a n + b n ) ,
Q sca = 2 x 2 n = 1 N max ( 2 n + 1 ) ( | a n | 2 + | b n | 2 ) ,
Q abs = Q ext Q sca .
σ abs = 1 4 π a 2 Q abs .
1 D i T i t = 1 r 2 r ( r 2 T i r ) + 1 r 2 sin 2 θ 2 T i φ 2 + 1 r 2 sin θ θ ( sin θ T i θ ) + 1 C i Φ ˙ ,
1 D s T s t = 1 r 2 r ( r 2 T s r ) + 1 r 2 sin 2 θ 2 T s φ 2 + 1 r 2 sin θ θ ( sin θ T s θ ) .
1 D i T i t 1 r 2 r ( r 2 T i r ) 1 C i 6 Q i n π a 3 = 0 ,
1 D s T s t 1 r 2 r ( r 2 T s r ) = 0 ,
Q i n = δ abs I i n , I i n = I i n 0 exp [ 4 t 2 τ U V 2 ] ,
T i | r = T s | r = T heat sink ,
C i T i r = C s T s r , ( r = a / 2 ) ,
T i t = D i [ 2 T i r 2 + 2 r T i r ] + D i C i 6 σ abs I i n 0 exp [ 4 t 2 / τ UV 2 ] π a 3 ,
T s t = D s [ 2 T s r 2 + 2 r T s r ] .
T i ( r , t + Δ t ) = ( 1 2 F o i 2 Δ r i r ) T i ( r , t ) + F o i 1 C i 6 σ abs I i n 0 exp [ 4 t 2 / τ UV 2 ] π a 3 + F o i [ ( 1 + 2 Δ r i r ) T i ( r + Δ r i , t ) + T i ( r Δ r i , t ) ] ,
T s ( r , t + Δ t ) = ( 1 2 F o s 2 Δ r s r ) T s ( r , t ) + F o s [ ( 1 + 2 Δ r s r ) T s ( r + Δ r s , t ) + T s ( r Δ r s , t ) ] ,
F o i = Δ t · D i Δ r i 2 ,
F o s = Δ t · D s Δ r s 2 .
1 2 F o i 2 Δ r i r 0 ,
1 2 F o s 2 Δ r s r 0 .
T i | r a / 2 = T s | r a / 2 .
δ = C s ρ s ζ s π ν UV = D s π ν UV = D s τ UV π ,

Metrics