Abstract

We explore the transfer of an incident light pattern onto the liquid crystal (LC) bulk in a photorefractive cell through an integrated photoconducting layer that modulates the electric field applied to the device. The electrical properties and the strength of modulation are investigated as a function of the incident light intensity as well as the frequency and amplitude of the applied voltage, for two LCs with very different electrical conductivity. A simplified electrical model of the cell is proposed, demonstrating that the LC conductivity is a key factor determining the beam-coupling strength.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optimal liquid crystal modulation controlled by surface alignment and anchoring strength

Keith R. Daly, Nina Podoliak, Oleksandr Buchnev, Malgosia Kaczmarek, and Giampaolo D’Alessandro
J. Opt. Soc. Am. B 29(8) 2166-2175 (2012)

Hybrid liquid crystal photorefractive system for the photorefractive coupling of surface plasmon polaritons

Stephen B. Abbott, Keith R. Daly, Giampaolo D’Alessandro, Malgosia Kaczmarek, and David C. Smith
J. Opt. Soc. Am. B 29(8) 1947-1958 (2012)

Smart electro-optical iris diaphragm based on liquid crystal film coating with photoconductive polymer of poly(N-vinylcarbazole)

Andy Ying-Guey Fuh, Ko Nan Chen, and Shing-Trong Wu
Appl. Opt. 55(22) 6034-6039 (2016)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (13)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription