Abstract

When a femtosecond-laser pulse excites a solid it may, among other ultrafast processes, induce coherent phonons, phonon frequency changes, thermal phonon squeezing, and nonthermal melting. Using our in-house code for highly excited valence electron systems, where laser-induced interatomic forces are computed “on the fly” from ab initio theory, we performed molecular dynamics simulations of supercells with up to 800 atoms. For Si we found that thermal phonon squeezing precurses nonthermal melting as a function of fluence. Furthermore, our molecular dynamics trajectories showed that nonthermal melting includes a stage during which the atoms move fractionally diffusive. We also simulated femtosecond-laser-excited Ge. In addition, we explain the electronic origin of laser-induced phonon frequency redshifts and blueshifts in Mg.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atomistic modeling of ultrashort-pulse ultraviolet laser ablation of a thin LiF film

Yaroslav Cherednikov, Nail A. Inogamov, and Herbert M. Urbassek
J. Opt. Soc. Am. B 28(8) 1817-1824 (2011)

Nonlinear light–matter interaction at terahertz frequencies

Daniele Nicoletti and Andrea Cavalleri
Adv. Opt. Photon. 8(3) 401-464 (2016)

Ultrafast optical manipulation of atomic arrangements in chalcogenide alloy memory materials

Kotaro Makino, Junji Tominaga, and Muneaki Hase
Opt. Express 19(2) 1260-1270 (2011)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (4)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription