Abstract

An electromagnetically induced phase grating controlled by spontaneous generated coherence (SGC) in a four-level N-type atomic system is studied. The results indicate that the diffraction efficiency of the phase grating is dramatically enhanced due to the existence of SGC, and an efficient electromagnetically induced phase grating can be obtained. A novel result is considerable improvement of the intensity of higher-order diffractions via relative phase between applied laser fields. Furthermore, it is found that the frequency detuning of the switching and coupling fields with the corresponding atomic transition, incoherent pumping, and the interaction length can improve the efficiency of the phase grating in the present atomic model.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electromagnetically induced phase grating via population trapping condition in a microwave-driven four-level atomic system

Tayebeh Naseri and Rasoul Sadighi-Bonabi
J. Opt. Soc. Am. B 31(11) 2879-2884 (2014)

Theoretical investigation of electromagnetically induced phase grating in RF-driven cascade-type atomic systems

Rasoul Sadighi-Bonabi and Tayebeh Naseri
Appl. Opt. 54(11) 3484-3490 (2015)

Electromagnetically induced grating in the microwave-driven four-level atomic systems

Rasoul Sadighi-Bonabi, Tayebeh Naseri, and Morteza Navadeh-Toupchi
Appl. Opt. 54(3) 368-377 (2015)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (6)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription