Abstract

We present a numerically feasible method for rigorous modeling of crossed diffraction gratings made of isotropic materials with third-order nonlinearity. The approach is based on an iterative solution of the crossed-grating problem with linear but anisotropic materials. We also discuss how the symmetries of the effective linear permittivity tensor can be exploited to speed up the computation when one considers normal incidence of light. Several numerical experiments are performed to demonstrate the accuracy as well as the versatility of this numerical technique.

© 2014 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fourier modal method formulation for fast analysis of two-dimensional periodic arrays of graphene

Seyed Amir Hossein Nekuee, Amin Khavasi, and Mahmood Akbari
J. Opt. Soc. Am. B 31(5) 987-993 (2014)

Fully vectorial modeling of cylindrical microresonators with aperiodic Fourier modal method

Ying Li, Haitao Liu, Hongwei Jia, Fang Bo, Guoquan Zhang, and Jingjun Xu
J. Opt. Soc. Am. A 31(11) 2459-2466 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (47)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription