Abstract

We numerically investigated temporal characteristics of in-band-pumped gain-switched thulim-doped fiber lasers (GSTDFL). Our theoretical model was based on rate equations and optical power propagation equations including both temporal and spatial variations. This model was validated by comparing the numerical results with results from previous experimental work. Due to the lack of a clear definition of the numerical threshold of gain-switched fiber lasers in the literature, we first defined it in our calculations as the status obtained when the variation of the widths of the generated pulses became nonlinear. Then, we used the model to explore the temporal characteristics of such lasers at and above the laser threshold. We found that the threshold pump energy would increase when the pump pulse width was longer than 500 ns and the pulse widths of the laser pulses at the threshold were kept the same at different pump widths. Above the threshold, by calculating the temporal shapes of the laser pulses under different pump conditions, we studied the origin of the trailing spike phenomenon in the in-band-pumped GSTDFLs and determined the parameter space of the pump conditions that could generate the pulses having a Gaussian-like temporal shape and free from the trailing spikes. We further investigated the variation of the laser pulse widths at different laser configurations and discussed their implications. We believe these numerical results can be referenced qualitatively by the design and optimization of the in-band-pumped GSTDFLs and other in-band-pumped gain-switched fiber lasers, such as those with Yb3+ and Ho3+ dopants.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Jiang and P. Tayebati, “Stable 10  ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32, 1797–1799 (2007).
    [CrossRef]
  2. N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19, 14949–14954 (2011).
    [CrossRef]
  3. J. Swiderski and M. Michalska, “Generation of self-mode-locked resembling pulses in a fast gain-switched thulium-doped fiber laser,” Opt. Lett. 38, 1624–1626 (2013).
    [CrossRef]
  4. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
    [CrossRef]
  5. J. Swiderski, M. Michalska, and G. Maze, “Mid-IR supercontinuum generation in a ZBLAN fiber pumped by a gain-switched mode-locked Tm-doped fiber laser and amplifier system,” Opt. Express 21, 7851–7857 (2013).
    [CrossRef]
  6. D. Creeden, P. A. Ketteridge, P. A. Budni, S. D. Setzler, Y. E. Young, J. C. McCarthy, K. Zawilski, P. G. Schunemann, T. M. Pollak, E. P. Chicklis, and M. Jiang, “Mid-infrared ZnGeP2 parametric oscillator directly pumped by a pulsed 2  μm Tm-doped fiber laser,” Opt. Lett. 33, 315–317 (2008).
    [CrossRef]
  7. F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
    [CrossRef]
  8. R. Zhou, Y. Ju, J. Zhao, C. Yang, and Y. Wang, “A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser,” Chin. Phys. B 22, 064208 (2013).
    [CrossRef]
  9. S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
    [CrossRef]
  10. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1, 52–57 (2013).
    [CrossRef]
  11. J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
    [CrossRef]
  12. J. Li and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
    [CrossRef]
  13. J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron. 48, 1560–1567 (2012).
    [CrossRef]
  14. Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
    [CrossRef]
  15. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956 (1999).
    [CrossRef]
  16. F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).
  17. http://www.nufern.com/pam/optical_fibers .
  18. J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834–840 (2012).
    [CrossRef]
  19. J. Chen, X. Zhu, and W. Sibbett, “Derivation of the threshold pump power of erbium-doped fiber lasers,” Opt. Lett. 17, 926–928 (1992).
    [CrossRef]
  20. J. Swiderski, M. Michalska, J. Kwiatkowski, and M. Mamajek, “An all-fiber, resonantly pumped, gain-switched, 2  μm Tm-doped silica fiber laser,” Laser Phys. Lett. 10, 015107 (2013).
    [CrossRef]
  21. C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
    [CrossRef]
  22. V. Agrez and R. Petkovsek, “Gain-switched Yb-doped fiber laser for microprocessing,” Appl. Opt. 52, 3066–3072 (2013).
    [CrossRef]
  23. C. Larsen, M. Giesberts, S. Nyga, O. Fitzau, B. Jungbluth, H. D. Hoffmann, and O. Bang, “Gain-switched all-fiber laser with narrow bandwidth,” Opt. Express 21, 12302–12308 (2013).
    [CrossRef]
  24. A. E. Siegman, Lasers (University Science, 1986).

2013 (7)

2012 (3)

J. Li and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[CrossRef]

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron. 48, 1560–1567 (2012).
[CrossRef]

J. Geng, Q. Wang, and S. Jiang, “High-spectral-flatness mid-infrared supercontinuum generated from a Tm-doped fiber amplifier,” Appl. Opt. 51, 834–840 (2012).
[CrossRef]

2011 (5)

C. Larsen, D. Noordegraaf, P. M. W. Skovgaard, K. P. Hansen, K. E. Mattsson, and O. Bang, “Gain-switched CW fiber laser for improved supercontinuum generation in a PCF,” Opt. Express 19, 14883–14891 (2011).
[CrossRef]

N. Simakov, A. Hemming, S. Bennetts, and J. Haub, “Efficient, polarised, gain-switched operation of a Tm-doped fibre laser,” Opt. Express 19, 14949–14954 (2011).
[CrossRef]

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
[CrossRef]

J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
[CrossRef]

2008 (1)

2007 (1)

1999 (1)

1998 (1)

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

1993 (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

1992 (1)

Agrez, V.

Bang, O.

Bennetts, S.

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Budni, P. A.

Carter, A.

J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
[CrossRef]

Chen, H.

F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
[CrossRef]

Chen, J.

Chicklis, E. P.

Creeden, D.

Ding, J.

J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
[CrossRef]

Fitzau, O.

Geng, J.

Giesberts, M.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hansen, K. P.

Haub, J.

Hemming, A.

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Hoffmann, H. D.

Jackson, S. D.

J. Li and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[CrossRef]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

Jiang, M.

Jiang, S.

Ju, Y.

R. Zhou, Y. Ju, J. Zhao, C. Yang, and Y. Wang, “A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser,” Chin. Phys. B 22, 064208 (2013).
[CrossRef]

Jungbluth, B.

Ketteridge, P. A.

King, T. A.

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

Kwiatkowski, J.

J. Swiderski, M. Michalska, J. Kwiatkowski, and M. Mamajek, “An all-fiber, resonantly pumped, gain-switched, 2  μm Tm-doped silica fiber laser,” Laser Phys. Lett. 10, 015107 (2013).
[CrossRef]

Larsen, C.

Li, J.

J. Li and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[CrossRef]

Lu, Q.

F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Mamajek, M.

J. Swiderski, M. Michalska, J. Kwiatkowski, and M. Mamajek, “An all-fiber, resonantly pumped, gain-switched, 2  μm Tm-doped silica fiber laser,” Laser Phys. Lett. 10, 015107 (2013).
[CrossRef]

Mattsson, K. E.

Maze, G.

McCarthy, J. C.

Michalska, M.

Mitschke, F.

F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).

Noordegraaf, D.

Nyga, S.

Petkovsek, R.

Pollak, T. M.

Samson, B.

J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
[CrossRef]

Schunemann, P. G.

Setzler, S. D.

Shen, D.

F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
[CrossRef]

F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
[CrossRef]

Sibbett, W.

Siegman, A. E.

A. E. Siegman, Lasers (University Science, 1986).

Simakov, N.

Skovgaard, P. M. W.

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Swiderski, J.

Tang, Y.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1, 52–57 (2013).
[CrossRef]

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron. 48, 1560–1567 (2012).
[CrossRef]

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

Tankala, K.

J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
[CrossRef]

Tayebati, P.

Wang, C.

J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
[CrossRef]

Wang, F.

F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
[CrossRef]

Wang, Q.

Wang, Y.

R. Zhou, Y. Ju, J. Zhao, C. Yang, and Y. Wang, “A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser,” Chin. Phys. B 22, 064208 (2013).
[CrossRef]

Xu, J.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1, 52–57 (2013).
[CrossRef]

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron. 48, 1560–1567 (2012).
[CrossRef]

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

Yang, C.

R. Zhou, Y. Ju, J. Zhao, C. Yang, and Y. Wang, “A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser,” Chin. Phys. B 22, 064208 (2013).
[CrossRef]

Yang, J.

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1, 52–57 (2013).
[CrossRef]

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron. 48, 1560–1567 (2012).
[CrossRef]

Young, Y. E.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

Zawilski, K.

Zhang, R.

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron. 48, 1560–1567 (2012).
[CrossRef]

Zhao, J.

R. Zhou, Y. Ju, J. Zhao, C. Yang, and Y. Wang, “A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser,” Chin. Phys. B 22, 064208 (2013).
[CrossRef]

Zhou, R.

R. Zhou, Y. Ju, J. Zhao, C. Yang, and Y. Wang, “A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser,” Chin. Phys. B 22, 064208 (2013).
[CrossRef]

Zhu, X.

Appl. Opt. (2)

Chin. Phys. B (1)

R. Zhou, Y. Ju, J. Zhao, C. Yang, and Y. Wang, “A theoretical and experimental investigation of an in-band pumped gain-switched thulium-doped fiber laser,” Chin. Phys. B 22, 064208 (2013).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. D. Jackson and T. A. King, “Efficient gain-switched operation of a Tm-doped silica fiber laser,” IEEE J. Quantum Electron. 34, 779–789 (1998).
[CrossRef]

J. Li and S. D. Jackson, “Numerical modeling and optimization of diode pumped heavily-erbium-doped fluoride fiber lasers,” IEEE J. Quantum Electron. 48, 454–464 (2012).
[CrossRef]

J. Yang, Y. Tang, R. Zhang, and J. Xu, “Modeling and characteristics of gain-switched diode-pumped Er-Yb codoped fiber lasers,” IEEE J. Quantum Electron. 48, 1560–1567 (2012).
[CrossRef]

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2  μm using solid-state lasers,” IEEE Trans. Geosci. Remote Sens. 31, 4–15 (1993).
[CrossRef]

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

J. Swiderski, M. Michalska, J. Kwiatkowski, and M. Mamajek, “An all-fiber, resonantly pumped, gain-switched, 2  μm Tm-doped silica fiber laser,” Laser Phys. Lett. 10, 015107 (2013).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Opt. Rev. (1)

F. Wang, D. Shen, H. Chen, D. Shen, and Q. Lu, “Model and optimization of stable gain-switched Tm-doped fiber lasers,” Opt. Rev. 18, 360–364 (2011).
[CrossRef]

Photon. Res. (1)

Proc. SPIE (1)

J. Ding, B. Samson, A. Carter, C. Wang, and K. Tankala, “A monolithic thulium doped single mode fiber laser with 1.5  ns pulsewidth and 8  kW peak power,” Proc. SPIE 7914, 79140X (2011).
[CrossRef]

Other (3)

F. Mitschke, Fiber Optics: Physics and Technology (Springer, 2009).

http://www.nufern.com/pam/optical_fibers .

A. E. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Comparison of the results from the experiment in [1] to our numerical simulation results. The laser setup that uses a section of passive fiber to vary the cavity length is shown inside of this figure.

Fig. 2.
Fig. 2.

Upper panel shows the width of the generated pulse as a function of the pump energy at a pump pulse width of 100 ns. The pump energy and the laser pulse width at the threshold as functions of the pump pulse width are shown in the lower panel.

Fig. 3.
Fig. 3.

Temporal traces of the in-band-pumped GSTDFLs under different pump pulse widths. They were retrieved at the pump ratio r=2, 5, and 10, respectively, from top to bottom.

Fig. 4.
Fig. 4.

Formation of a typical gain-switched pulse with trailing spikes. The black dashed line and the red solid line are the pump pulse and the laser pulse, respectively. The blue solid line shows the evolution of the upper level population.

Fig. 5.
Fig. 5.

Upper panel shows two kinds of pulse shape distortions that appeared in our simulation. Lower panel shows the pump conditions that decide whether the pulse shape distortion happens.

Fig. 6.
Fig. 6.

Laser pulse width versus the pump ratio r.

Fig. 7.
Fig. 7.

Upper panel shows the laser pulse width as a function of the cavity length and lower panel shows the laser pulse width as a function of the OC reflectivity.

Tables (1)

Tables Icon

Table 1. Parameters Employed in the Numerical Simulation

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

N2(z,t)t=Γpσ12(λp)Pp(z,t)λphcAc[N0N2(z,t)]Γsσ21(λs)[Ps+(z,t)+Ps(z,t)]λshcAcN2(z,t)N2(z,t)τ2,
Pp(z,t)z+Pp(z,t)vgt=Γpσ12(λp)[N0N2(z,t)]Pp(z,t)αpPp(z,t),
±Ps±(z,t)z+Ps±(z,t)vgt=Γsσ21(λs)N2(z,t)Ps±(z,t)αsPs±(z,t)+Γs2hc2λs3σ21(λs)N2(z,t)ΔλASE,
ωp,s=rc(0.65+1.619Vp,s1.5+2.876Vp,s6),
Γp,s=1e2rc2ωp,s2.
Pp(z=0,t)=Pp0(t),
Ps+(z=0,t)=R1Ps(z=0,t),
Ps(z=l,t)=R2Ps+(z=l,t),
Pp(z,t)z+Pp(z,t)vpt=αpPp(z,t),
±Ps±(z,t)z+Ps±(z,t)vpt=αsPs±(z,t).
r=Ep0Ept,
τc=2nlcln(1/R1R2),

Metrics