Abstract

The bandgap characteristics of 1D dual-periodic photonic crystal (PC) heterostructures composed of two different 1D PCs containing TiO2/MgF2 multilayer films were theoretically studied through a transfer matrix method. With broad nontransmission bandgap and high-transmission peaks for electromagnetic and magnetic electric modes, the optimization design provides a promising method to fabricate the dual-periodic PC three-channel filter with a wide nontransmission range in the visible range. At the incident angle of less than 28°, the nontransmission range of the dual-periodic PC three-channel filters can be substantially enlarged over the entire visible range, and the phenomenon of three-channel filters in blue, green, and red light can be realized by adjusting the repeat cycle counts of two 1D PCs. Thus the proposed approach can be utilized for display applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (5)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription