Abstract

The bandgap characteristics of 1D dual-periodic photonic crystal (PC) heterostructures composed of two different 1D PCs containing TiO2/MgF2 multilayer films were theoretically studied through a transfer matrix method. With broad nontransmission bandgap and high-transmission peaks for electromagnetic and magnetic electric modes, the optimization design provides a promising method to fabricate the dual-periodic PC three-channel filter with a wide nontransmission range in the visible range. At the incident angle of less than 28°, the nontransmission range of the dual-periodic PC three-channel filters can be substantially enlarged over the entire visible range, and the phenomenon of three-channel filters in blue, green, and red light can be realized by adjusting the repeat cycle counts of two 1D PCs. Thus the proposed approach can be utilized for display applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef]
  3. H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
    [CrossRef]
  4. G. Q. Liang, P. Han, and H. Z. Wang, “Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure,” Opt. Lett. 29, 192–194 (2004).
    [CrossRef]
  5. C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).
  6. C. J. Wu, M. H. Lee, and J. Z. Jian, “Design and analysis of multichannel transmission filter based on the single-negative photonic crystal,” Prog. Electromagn. Res. 136, 561–578 (2013).
  7. F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
    [CrossRef]
  8. W. Y. Rao, Y. J. Song, and C. J. Jin, “Design of multichannel filters with each channel wavelength and bandwidth adjustable independently,” J. Opt. Soc. Am. B 27, 10–15 (2010).
    [CrossRef]
  9. Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
    [CrossRef]
  10. I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
    [CrossRef]
  11. C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38, 4037–4039 (2013).
    [CrossRef]
  12. X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
    [CrossRef]
  13. A. Mishra, S. K. Awasthi, S. K. Srivastava, U. Malaviya, and S. P. Ojha, “Tunable and omnidirectional filters based on one-dimensional photonic crystals composed of single-negative materials,” J. Opt. Soc. Am. B 28, 1416–1422 (2011).
    [CrossRef]
  14. J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
    [CrossRef]
  15. Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
    [CrossRef]
  16. L. Wang, Z. S. Wang, Y. G. Wu, and L. Y. Chen, “Enlargement of the non-transmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
    [CrossRef]
  17. X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Prog. Electromagn. Res. 120, 17–34 (2011).
  18. http://refractiveindex.info/ .
  19. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), pp. 38–102.

2013 (3)

C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).

C. J. Wu, M. H. Lee, and J. Z. Jian, “Design and analysis of multichannel transmission filter based on the single-negative photonic crystal,” Prog. Electromagn. Res. 136, 561–578 (2013).

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38, 4037–4039 (2013).
[CrossRef]

2012 (1)

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

2011 (2)

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Prog. Electromagn. Res. 120, 17–34 (2011).

A. Mishra, S. K. Awasthi, S. K. Srivastava, U. Malaviya, and S. P. Ojha, “Tunable and omnidirectional filters based on one-dimensional photonic crystals composed of single-negative materials,” J. Opt. Soc. Am. B 28, 1416–1422 (2011).
[CrossRef]

2010 (1)

2008 (2)

J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
[CrossRef]

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

2005 (1)

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
[CrossRef]

2004 (3)

G. Q. Liang, P. Han, and H. Z. Wang, “Narrow frequency and sharp angular defect mode in one-dimensional photonic crystals from a photonic heterostructure,” Opt. Lett. 29, 192–194 (2004).
[CrossRef]

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

L. Wang, Z. S. Wang, Y. G. Wu, and L. Y. Chen, “Enlargement of the non-transmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

2003 (1)

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

2000 (1)

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Awasthi, S. K.

Born, M.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), pp. 38–102.

Chang, H.

Chen, H.

J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
[CrossRef]

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
[CrossRef]

Chen, L. Y.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

L. Wang, Z. S. Wang, Y. G. Wu, and L. Y. Chen, “Enlargement of the non-transmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Chen, X. S.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

Dai, X. Y.

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Prog. Electromagn. Res. 120, 17–34 (2011).

Exner, A. T.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

Guehl, M.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

Guo, J. Y.

J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
[CrossRef]

Han, P.

Ho, K. M.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

Hu, X.

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38, 4037–4039 (2013).
[CrossRef]

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

Jian, J. Z.

C. J. Wu, M. H. Lee, and J. Z. Jian, “Design and analysis of multichannel transmission filter based on the single-negative photonic crystal,” Prog. Electromagn. Res. 136, 561–578 (2013).

Jiang, H.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
[CrossRef]

Jin, C. J.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Lee, M. H.

C. J. Wu, M. H. Lee, and J. Z. Jian, “Design and analysis of multichannel transmission filter based on the single-negative photonic crystal,” Prog. Electromagn. Res. 136, 561–578 (2013).

Leung, W. Y.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

Li, H.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
[CrossRef]

Li, H. Q.

J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
[CrossRef]

Li, M.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

Li, Y.

C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).

Liang, G. Q.

Lin, S. Y.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

Lotsch, B. V.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

Lu, H.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Lu, W.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

Lugli, P.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

Malaviya, U.

Ming, N. B.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Mishra, A.

Ojha, S. P.

Pavlichenko, I.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

Qiao, F.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Qin, Q.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Rao, W. Y.

Scarpa, G.

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

Song, Y. J.

Srivastava, S. K.

Sun, Y.

J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
[CrossRef]

Wan, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Wang, H. Z.

Wang, L.

L. Wang, Z. S. Wang, Y. G. Wu, and L. Y. Chen, “Enlargement of the non-transmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

Wang, Z. S.

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

L. Wang, Z. S. Wang, Y. G. Wu, and L. Y. Chen, “Enlargement of the non-transmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Wen, S. C.

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Prog. Electromagn. Res. 120, 17–34 (2011).

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), pp. 38–102.

Wu, C. J.

C. J. Wu, M. H. Lee, and J. Z. Jian, “Design and analysis of multichannel transmission filter based on the single-negative photonic crystal,” Prog. Electromagn. Res. 136, 561–578 (2013).

Wu, Y. G.

L. Wang, Z. S. Wang, Y. G. Wu, and L. Y. Chen, “Enlargement of the non-transmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

Xiang, Y. J.

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Prog. Electromagn. Res. 120, 17–34 (2011).

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

Yang, N.

C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).

Ye, Q.

C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).

Ye, Z.

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

Ying, C. F.

C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).

Yuan, C. S.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Zhang, C.

C. Zhang, H. Chang, F. Zhao, and X. Hu, “Design principle of Au grating couplers for quantum-well infrared photodetectors,” Opt. Lett. 38, 4037–4039 (2013).
[CrossRef]

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Zhang, Y.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
[CrossRef]

Zhang, Y. W.

J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
[CrossRef]

Zhao, F.

Zhou, W. Y.

C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).

Zhu, S.

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
[CrossRef]

Zhu, S. N.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Zhu, Y. Y.

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Zi, J.

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

AIP Adv. (1)

C. F. Ying, W. Y. Zhou, Y. Li, Q. Ye, and N. Yang, “Multiple and colorful cone-shaped lasing induced by band-coupling in a 1D dual-periodic photonic crystal,” AIP Adv. 3, 022125 (2013).

Appl. Phys. Lett. (4)

F. Qiao, C. Zhang, J. Wan, and J. Zi, “Photonic quantum-well structures: multiple channeled filtering phenomena,” Appl. Phys. Lett. 77, 3698–3700 (2000).
[CrossRef]

Z. S. Wang, L. Wang, Y. G. Wu, L. Y. Chen, X. S. Chen, and W. Lu, “Multiple channeled phenomena in heterostructures with defects mode,” Appl. Phys. Lett. 84, 1629–1631 (2004).
[CrossRef]

X. Hu, M. Li, Z. Ye, W. Y. Leung, K. M. Ho, and S. Y. Lin, “Design of midinfrared photodetectors enhanced by resonant cavities with subwavelength metallic gratings,” Appl. Phys. Lett. 93, 241108 (2008).
[CrossRef]

Q. Qin, H. Lu, S. N. Zhu, C. S. Yuan, Y. Y. Zhu, and N. B. Ming, “Resonance transmission modes in dual-periodical dielectric multilayer films,” Appl. Phys. Lett. 82, 4654–4656 (2003).
[CrossRef]

Chin. Phys. Lett. (1)

J. Y. Guo, Y. Sun, H. Q. Li, Y. W. Zhang, and H. Chen, “Optical tamm states in dielectric photonic crystal heterostructure,” Chin. Phys. Lett. 25, 2093–2096 (2008).
[CrossRef]

J. Appl. Phys. (2)

L. Wang, Z. S. Wang, Y. G. Wu, and L. Y. Chen, “Enlargement of the non-transmission frequency range of multiple-channeled filters by the use of heterostructures,” J. Appl. Phys. 95, 424–426 (2004).
[CrossRef]

H. Jiang, H. Chen, H. Li, Y. Zhang, and S. Zhu, “Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials,” J. Appl. Phys. 98, 013101 (2005).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

I. Pavlichenko, A. T. Exner, M. Guehl, P. Lugli, G. Scarpa, and B. V. Lotsch, “Humidity-enhanced thermally tunable TiO2/SiO2 bragg stacks,” J. Phys. Chem. C 116, 298–305 (2012).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef]

Prog. Electromagn. Res. (2)

C. J. Wu, M. H. Lee, and J. Z. Jian, “Design and analysis of multichannel transmission filter based on the single-negative photonic crystal,” Prog. Electromagn. Res. 136, 561–578 (2013).

X. Y. Dai, Y. J. Xiang, and S. C. Wen, “Broad omnidirectional reflector in the one-dimensional ternary photonic crystals containing superconductor,” Prog. Electromagn. Res. 120, 17–34 (2011).

Other (2)

http://refractiveindex.info/ .

M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999), pp. 38–102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

1D PCs structure model of heterostructures. (a) (AB)m(CD)n. (b) (AB)q(BA)q(CD)p(DC)p, n1 and n2 are the refractive index of TiO2 and MgF2, respectively.

Fig. 2.
Fig. 2.

Transmittance spectrum of 1D PCs (AB)m, (CD)n, and (AB)m(CD)n, the relationship between 1D PCs. (a) (AB)m. (b) (CD)n. (c) (AB)m(CD)n.

Fig. 3.
Fig. 3.

Transmittance spectrum of 1D PCs of (AB)5(BA)5, (CD)5(DC)5, and (AB)5(BA)5(CD)5(DC)5 and the relationship among 1D PCs of (a) (AB)5(BA)5, (b) (CD)5(DC)5 and (c) (AB)5(BA)5(CD)5(DC)5.

Fig. 4.
Fig. 4.

Relationship between the defect modes and the repeat layers q and p of heterostructures (AB)q(BA)q(CD)p(CD)p (q=p=46).

Fig. 5.
Fig. 5.

Relationship between the defect modes and the repeat layers q and p of heterostructures (AB)q(BA)q(CD)p(CD)p (q=46, p=5).

Fig. 6.
Fig. 6.

Relationship between the defect modes and the repeat layers q and p of heterostructures (AB)q(BA)q(CD)p(CD)p (q=5, p=46).

Fig. 7.
Fig. 7.

Relationship between incidence angle and the location of defect modes of heterostructure (AB)5(BA)5(CD)6(DC)6 (a) TE mode and (b) TM mode.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Mk(λ)=[cosβkisinβk/ηkTE/TMisinβkηkTE/TMcosβk],
ηkTE/TM={nkcosθk(TE)nk/cosθk(TM).
Tm(λ)=mi1(k=1mMk).
Tq(λ)Tp(λ)=[X11X12X21X22].
RtotalTE/TM(λ)=|rTE/TM(λ)|2=|XaaXabXaa+Xab|,

Metrics