J. D. Parisse, M. Sentis, and D. E. Zeitoun, “Modeling and numerical simulation of laser matter interaction and ablation with 193 nanometer laser for nanosecond pulse,” Int. J. Numer. Methods Heat Fluid Flow 2, 173–194 (2011).

N. A. Vasantgadkar, U. V. Bhandarkar, and S. S. Joshi, “A finite element model to predict the ablation depth in pulsed laser ablation,” Thin Solid Films 519, 1421–1430 (2010).

[CrossRef]

M. Stafe, C. Negutu, N. N. Puscas, and I. M. Popescu, “Pulsed laser ablation of solids,” Roman. Rep. Phys. 62, 758–770 (2010).

F. E. M. Silveira and S. M. Kurcbart, “Hagen-Rubens relation beyond far-infrared region,” Europhys. Lett. 90, 44004 (2010).

[CrossRef]

S. E.-S. Abd El-Ghany, “A theoretical study of the evaporation induced by a pulsed laser in a finite slab,” Opt. Commun. 282, 284–290 (2009).

[CrossRef]

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

M. Stafe, C. Negutu, and I. M. Popescu, “Combined experimental and theoretical investigation of multiple-nanosecond laser ablation of metals,” J. Optoelectron. Adv. Mater. 8, 1180–1186 (2006).

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

A. F. H. Kaplan, “Model of the absorption variation during pulsed heating applied to welding of electronic Au/Ni coated Cu-lead frames,” Appl. Surf. Sci. 241, 362–370 (2005).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation,” Spectrochim. Acta B 60, 1280–1307 (2005).

[CrossRef]

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

A. Bogaerts and Z. Chen, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B 58, 1867–1893 (2003).

[CrossRef]

S. Laville, F. Vidal, T. W. Johnston, O. Barthlemy, and M. Chaker, “Fluid modeling of laser ablation depth as a function of pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).

[CrossRef]

Q. M. Lu, S. Mao, X. L. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).

[CrossRef]

X. Xu, “Phase explosion and its time lag in nanosecond laser ablation,” Appl. Surf. Sci. 197–198, 61–66 (2002).

[CrossRef]

G. Colonna, L. D. Pietnaza, and M. Capitelli, “Coupled solution of a time dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochem. Acta. B 56, 587–598 (2001).

[CrossRef]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).

[CrossRef]

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solids,” Opt. Laser Technol. 33, 533–537 (2001).

[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).

[CrossRef]

M. Capitelli, F. Capitelli, and A. Elatski, “Non-equilibrium and equilibrium problems in laser induced plasmas,” Spectrochim. Acta B 55, 559–574 (2000).

[CrossRef]

X. Mao and R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys. A 64, 1–6 (1996).

[CrossRef]

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50, 4716–4727 (1994).

A. F. Hassan, M. M. El-Nicklawy, and M. K. El-Adawi, “A general problem of pulse laser heating of a slab,” Opt. Laser Technol. 25, 155–162 (1993).

[CrossRef]

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63, 314–320 (1991).

[CrossRef]

M. K. El Adawi and E. F. El Shehawey, “Heating a slab induced by a time-dependent laser irradiation—an exact solution,” J. Appl. Phys. 60, 2250–2255 (1986).

[CrossRef]

S. E.-S. Abd El-Ghany, “A theoretical study of the evaporation induced by a pulsed laser in a finite slab,” Opt. Commun. 282, 284–290 (2009).

[CrossRef]

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63, 314–320 (1991).

[CrossRef]

S. Laville, F. Vidal, T. W. Johnston, O. Barthlemy, and M. Chaker, “Fluid modeling of laser ablation depth as a function of pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).

[CrossRef]

N. A. Vasantgadkar, U. V. Bhandarkar, and S. S. Joshi, “A finite element model to predict the ablation depth in pulsed laser ablation,” Thin Solid Films 519, 1421–1430 (2010).

[CrossRef]

M. von Allemen and A. Blatter, Laser Beam Interaction with Materials (Springer, 1995).

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation,” Spectrochim. Acta B 60, 1280–1307 (2005).

[CrossRef]

A. Bogaerts and Z. Chen, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B 58, 1867–1893 (2003).

[CrossRef]

D. Buerle, Laser Processing and Chemistry (Springer, 2011).

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).

[CrossRef]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).

[CrossRef]

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Optical breakdown in gases induced by high-power IR Co2 pulsed lasers,” in Laser Beams: Theory, Properties and Applications, M. Thys and E. Desmet, eds. (Nova Science, 2011), pp. 415–500.

M. Capitelli, F. Capitelli, and A. Elatski, “Non-equilibrium and equilibrium problems in laser induced plasmas,” Spectrochim. Acta B 55, 559–574 (2000).

[CrossRef]

G. Colonna, L. D. Pietnaza, and M. Capitelli, “Coupled solution of a time dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochem. Acta. B 56, 587–598 (2001).

[CrossRef]

M. Capitelli, F. Capitelli, and A. Elatski, “Non-equilibrium and equilibrium problems in laser induced plasmas,” Spectrochim. Acta B 55, 559–574 (2000).

[CrossRef]

J. H. Carlslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).

S. Laville, F. Vidal, T. W. Johnston, O. Barthlemy, and M. Chaker, “Fluid modeling of laser ablation depth as a function of pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).

[CrossRef]

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation,” Spectrochim. Acta B 60, 1280–1307 (2005).

[CrossRef]

A. Bogaerts and Z. Chen, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B 58, 1867–1893 (2003).

[CrossRef]

G. Colonna, L. D. Pietnaza, and M. Capitelli, “Coupled solution of a time dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochem. Acta. B 56, 587–598 (2001).

[CrossRef]

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 2006).

L. J. Rakziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (CRC Press, 1989).

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Optical breakdown in gases induced by high-power IR Co2 pulsed lasers,” in Laser Beams: Theory, Properties and Applications, M. Thys and E. Desmet, eds. (Nova Science, 2011), pp. 415–500.

M. K. El Adawi and E. F. El Shehawey, “Heating a slab induced by a time-dependent laser irradiation—an exact solution,” J. Appl. Phys. 60, 2250–2255 (1986).

[CrossRef]

M. K. El Adawi and E. F. El Shehawey, “Heating a slab induced by a time-dependent laser irradiation—an exact solution,” J. Appl. Phys. 60, 2250–2255 (1986).

[CrossRef]

A. F. Hassan, M. M. El-Nicklawy, and M. K. El-Adawi, “A general problem of pulse laser heating of a slab,” Opt. Laser Technol. 25, 155–162 (1993).

[CrossRef]

M. Capitelli, F. Capitelli, and A. Elatski, “Non-equilibrium and equilibrium problems in laser induced plasmas,” Spectrochim. Acta B 55, 559–574 (2000).

[CrossRef]

A. F. Hassan, M. M. El-Nicklawy, and M. K. El-Adawi, “A general problem of pulse laser heating of a slab,” Opt. Laser Technol. 25, 155–162 (1993).

[CrossRef]

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).

[CrossRef]

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63, 314–320 (1991).

[CrossRef]

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

A. F. Hassan, M. M. El-Nicklawy, and M. K. El-Adawi, “A general problem of pulse laser heating of a slab,” Opt. Laser Technol. 25, 155–162 (1993).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

T. Itina, “Etudes numériques des mécanismes d’interaction d’un laser impulsionnel avec des matériaux: application à la sythèse de nano agrégats,” HDR document (Universite de la Mediterranee Aix-Marseille II, 2008).

J. H. Carlslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).

S. Laville, F. Vidal, T. W. Johnston, O. Barthlemy, and M. Chaker, “Fluid modeling of laser ablation depth as a function of pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).

[CrossRef]

N. A. Vasantgadkar, U. V. Bhandarkar, and S. S. Joshi, “A finite element model to predict the ablation depth in pulsed laser ablation,” Thin Solid Films 519, 1421–1430 (2010).

[CrossRef]

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Optical breakdown in gases induced by high-power IR Co2 pulsed lasers,” in Laser Beams: Theory, Properties and Applications, M. Thys and E. Desmet, eds. (Nova Science, 2011), pp. 415–500.

A. F. H. Kaplan, “Model of the absorption variation during pulsed heating applied to welding of electronic Au/Ni coated Cu-lead frames,” Appl. Surf. Sci. 241, 362–370 (2005).

[CrossRef]

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50, 4716–4727 (1994).

F. E. M. Silveira and S. M. Kurcbart, “Hagen-Rubens relation beyond far-infrared region,” Europhys. Lett. 90, 44004 (2010).

[CrossRef]

S. Laville, F. Vidal, T. W. Johnston, O. Barthlemy, and M. Chaker, “Fluid modeling of laser ablation depth as a function of pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).

[CrossRef]

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solids,” Opt. Laser Technol. 33, 533–537 (2001).

[CrossRef]

Q. M. Lu, S. Mao, X. L. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).

[CrossRef]

Q. M. Lu, S. Mao, X. L. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).

[CrossRef]

X. Mao and R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys. A 64, 1–6 (1996).

[CrossRef]

Q. M. Lu, S. Mao, X. L. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).

[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).

[CrossRef]

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50, 4716–4727 (1994).

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).

[CrossRef]

M. Stafe, C. Negutu, N. N. Puscas, and I. M. Popescu, “Pulsed laser ablation of solids,” Roman. Rep. Phys. 62, 758–770 (2010).

M. Stafe, C. Negutu, and I. M. Popescu, “Combined experimental and theoretical investigation of multiple-nanosecond laser ablation of metals,” J. Optoelectron. Adv. Mater. 8, 1180–1186 (2006).

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solids,” Opt. Laser Technol. 33, 533–537 (2001).

[CrossRef]

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

J. D. Parisse, M. Sentis, and D. E. Zeitoun, “Modeling and numerical simulation of laser matter interaction and ablation with 193 nanometer laser for nanosecond pulse,” Int. J. Numer. Methods Heat Fluid Flow 2, 173–194 (2011).

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50, 4716–4727 (1994).

G. Colonna, L. D. Pietnaza, and M. Capitelli, “Coupled solution of a time dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochem. Acta. B 56, 587–598 (2001).

[CrossRef]

M. Stafe, C. Negutu, N. N. Puscas, and I. M. Popescu, “Pulsed laser ablation of solids,” Roman. Rep. Phys. 62, 758–770 (2010).

M. Stafe, C. Negutu, and I. M. Popescu, “Combined experimental and theoretical investigation of multiple-nanosecond laser ablation of metals,” J. Optoelectron. Adv. Mater. 8, 1180–1186 (2006).

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Optical breakdown in gases induced by high-power IR Co2 pulsed lasers,” in Laser Beams: Theory, Properties and Applications, M. Thys and E. Desmet, eds. (Nova Science, 2011), pp. 415–500.

M. Stafe, C. Negutu, N. N. Puscas, and I. M. Popescu, “Pulsed laser ablation of solids,” Roman. Rep. Phys. 62, 758–770 (2010).

D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 2006).

L. J. Rakziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (CRC Press, 1989).

J. F. Ready, Effects of High Power Laser Radiation (Academic, 1971).

Q. M. Lu, S. Mao, X. L. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).

[CrossRef]

X. Mao and R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys. A 64, 1–6 (1996).

[CrossRef]

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Optical breakdown in gases induced by high-power IR Co2 pulsed lasers,” in Laser Beams: Theory, Properties and Applications, M. Thys and E. Desmet, eds. (Nova Science, 2011), pp. 415–500.

J. D. Parisse, M. Sentis, and D. E. Zeitoun, “Modeling and numerical simulation of laser matter interaction and ablation with 193 nanometer laser for nanosecond pulse,” Int. J. Numer. Methods Heat Fluid Flow 2, 173–194 (2011).

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solids,” Opt. Laser Technol. 33, 533–537 (2001).

[CrossRef]

F. E. M. Silveira and S. M. Kurcbart, “Hagen-Rubens relation beyond far-infrared region,” Europhys. Lett. 90, 44004 (2010).

[CrossRef]

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

M. Stafe, C. Negutu, N. N. Puscas, and I. M. Popescu, “Pulsed laser ablation of solids,” Roman. Rep. Phys. 62, 758–770 (2010).

M. Stafe, C. Negutu, and I. M. Popescu, “Combined experimental and theoretical investigation of multiple-nanosecond laser ablation of metals,” J. Optoelectron. Adv. Mater. 8, 1180–1186 (2006).

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

N. A. Vasantgadkar, U. V. Bhandarkar, and S. S. Joshi, “A finite element model to predict the ablation depth in pulsed laser ablation,” Thin Solid Films 519, 1421–1430 (2010).

[CrossRef]

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63, 314–320 (1991).

[CrossRef]

S. Laville, F. Vidal, T. W. Johnston, O. Barthlemy, and M. Chaker, “Fluid modeling of laser ablation depth as a function of pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).

[CrossRef]

M. von Allemen and A. Blatter, Laser Beam Interaction with Materials (Springer, 1995).

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).

[CrossRef]

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

X. Xu, “Phase explosion and its time lag in nanosecond laser ablation,” Appl. Surf. Sci. 197–198, 61–66 (2002).

[CrossRef]

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

J. D. Parisse, M. Sentis, and D. E. Zeitoun, “Modeling and numerical simulation of laser matter interaction and ablation with 193 nanometer laser for nanosecond pulse,” Int. J. Numer. Methods Heat Fluid Flow 2, 173–194 (2011).

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solids,” Opt. Laser Technol. 33, 533–537 (2001).

[CrossRef]

L. Balazs, R. Gijbels, and A. Vertes, “Expansion of laser-generated plumes near the plasma ignition threshold,” Anal. Chem. 63, 314–320 (1991).

[CrossRef]

P. Fichet, P. Mauchien, J. F. Wagner, and C. Moulin, “Quantitative elemental determination in water and oil by laser induced breakdown spectroscopy,” Anal. Chim. Acta 429, 269–278 (2001).

[CrossRef]

X. Mao and R. E. Russo, “Observation of plasma shielding by measuring transmitted and reflected laser pulse temporal profiles,” Appl. Phys. A 64, 1–6 (1996).

[CrossRef]

N. M. Bulgakova and A. V. Bulgakov, “Pulsed laser ablation of solids: transition from normal vaporization to phase explosion,” Appl. Phys. A 73, 199–208 (2001).

[CrossRef]

Q. M. Lu, S. Mao, X. L. Mao, and R. E. Russo, “Delayed phase explosion during high-power nanosecond laser ablation of silicon,” Appl. Phys. Lett. 80, 3072–3074 (2002).

[CrossRef]

A. F. H. Kaplan, “Model of the absorption variation during pulsed heating applied to welding of electronic Au/Ni coated Cu-lead frames,” Appl. Surf. Sci. 241, 362–370 (2005).

[CrossRef]

X. Xu, “Phase explosion and its time lag in nanosecond laser ablation,” Appl. Surf. Sci. 197–198, 61–66 (2002).

[CrossRef]

F. E. M. Silveira and S. M. Kurcbart, “Hagen-Rubens relation beyond far-infrared region,” Europhys. Lett. 90, 44004 (2010).

[CrossRef]

J. D. Parisse, M. Sentis, and D. E. Zeitoun, “Modeling and numerical simulation of laser matter interaction and ablation with 193 nanometer laser for nanosecond pulse,” Int. J. Numer. Methods Heat Fluid Flow 2, 173–194 (2011).

J. Winefordner, I. B. Gornushkin, T. Correll, E. Gibb, B. W. Smith, and N. Omenetto, “Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectroscopy, LIBS, a future super star,” J. Anal. At. Spectrom. 19, 1061–1083 (2004).

[CrossRef]

M. K. El Adawi and E. F. El Shehawey, “Heating a slab induced by a time-dependent laser irradiation—an exact solution,” J. Appl. Phys. 60, 2250–2255 (1986).

[CrossRef]

M. Stafe, C. Negutu, and I. M. Popescu, “Combined experimental and theoretical investigation of multiple-nanosecond laser ablation of metals,” J. Optoelectron. Adv. Mater. 8, 1180–1186 (2006).

S. E.-S. Abd El-Ghany, “A theoretical study of the evaporation induced by a pulsed laser in a finite slab,” Opt. Commun. 282, 284–290 (2009).

[CrossRef]

A. F. Hassan, M. M. El-Nicklawy, and M. K. El-Adawi, “A general problem of pulse laser heating of a slab,” Opt. Laser Technol. 25, 155–162 (1993).

[CrossRef]

Z. H. Shen, S. Y. Zhang, J. Lu, and X. W. Ni, “Mathematical modeling of laser induced heating and melting in solids,” Opt. Laser Technol. 33, 533–537 (2001).

[CrossRef]

D. Zhang, D. Liu, Z. Li, S. Hou, B. Yu, L. Guan, X. Tan, and L. Li, “A new model of pulsed laser ablation and plasma shielding,” Phys. B 362, 82–87 (2005).

S. Laville, F. Vidal, T. W. Johnston, O. Barthlemy, and M. Chaker, “Fluid modeling of laser ablation depth as a function of pulse duration for conductors,” Phys. Rev. E 66, 066415 (2002).

[CrossRef]

A. Peterlongo, A. Miotello, and R. Kelly, “Laser-pulse sputtering of aluminum: vaporization, boiling, superheating, and gas-dynamic effects,” Phys. Rev. E 50, 4716–4727 (1994).

L. Li, D. Zhang, Z. Li, L. Guan, X. Tan, R. Fang, D. Hu, and G. Liu, “The investigation of optical characteristics of metal target in high power laser ablation,” Physica B 383, 194–201 (2006).

[CrossRef]

M. Stafe, C. Negutu, N. N. Puscas, and I. M. Popescu, “Pulsed laser ablation of solids,” Roman. Rep. Phys. 62, 758–770 (2010).

R. Fang, D. Zhang, Z. Li, F. Yang, L. Li, X. Tan, and M. Sun, “Improved thermal model and its application in UV high-power pulsed laser ablation of metal target,” Solid State Commun. 145, 556–560 (2008).

[CrossRef]

G. Colonna, L. D. Pietnaza, and M. Capitelli, “Coupled solution of a time dependent collisional-radiative model and Boltzmann equation for atomic hydrogen plasmas: possible implications with LIBS plasmas,” Spectrochem. Acta. B 56, 587–598 (2001).

[CrossRef]

M. Capitelli, F. Capitelli, and A. Elatski, “Non-equilibrium and equilibrium problems in laser induced plasmas,” Spectrochim. Acta B 55, 559–574 (2000).

[CrossRef]

A. Bogaerts and Z. Chen, “Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation,” Spectrochim. Acta B 60, 1280–1307 (2005).

[CrossRef]

A. Bogaerts and Z. Chen, “Laser ablation for analytical sampling: what can we learn from modeling?” Spectrochim. Acta B 58, 1867–1893 (2003).

[CrossRef]

N. A. Vasantgadkar, U. V. Bhandarkar, and S. S. Joshi, “A finite element model to predict the ablation depth in pulsed laser ablation,” Thin Solid Films 519, 1421–1430 (2010).

[CrossRef]

J. F. Ready, Effects of High Power Laser Radiation (Academic, 1971).

J. H. Carlslaw and J. C. Jaeger, Conduction of Heat in Solids (Oxford University, 1959).

L. J. Rakziemski and D. A. Cremers, Laser-Induced Plasmas and Applications (CRC Press, 1989).

M. von Allemen and A. Blatter, Laser Beam Interaction with Materials (Springer, 1995).

D. Buerle, Laser Processing and Chemistry (Springer, 2011).

T. Itina, “Etudes numériques des mécanismes d’interaction d’un laser impulsionnel avec des matériaux: application à la sythèse de nano agrégats,” HDR document (Universite de la Mediterranee Aix-Marseille II, 2008).

J. J. Camacho, L. Diaz, M. Santos, L. J. Juan, and J. M. L. Poyato, “Optical breakdown in gases induced by high-power IR Co2 pulsed lasers,” in Laser Beams: Theory, Properties and Applications, M. Thys and E. Desmet, eds. (Nova Science, 2011), pp. 415–500.

J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy (Elsevier, 2007).

D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Breakdown Spectroscopy (Wiley, 2006).