Abstract

The polarization scan of both pumps in a noncollinear second-harmonic experiment is shown to be a powerful tool for identifying the different components of plane misalignment angles in a nonlinear crystal. Here, we report an optical axis misalignment as small as 1°, in a 380 μm thick 4H–SiC sample, by means of 130 fs pulsed laser of 830 nm wavelength. The optical axis misalignment is confirmed by the x-ray structural analysis.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques (CRC Press, 2009).
  2. M. Kauranen and S. Cattaneo, “Polarization techniques for surface nonlinear optics,” Prog. Opt. 51, 69–120 (2008).
    [CrossRef]
  3. S. Cattaneo and M. Kauranen, “Determination of second-order susceptibility components of thin films by two-beam second-harmonic generation,” Opt. Lett. 28, 1445–1447 (2003).
    [CrossRef]
  4. M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191 (2009).
    [CrossRef]
  5. F. A. Bovino, M. Giardina, M. C. Larciprete, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” U.S. patentWO/2010/113190 (March31, 2009).
  6. F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.
  7. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  8. F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
    [CrossRef]
  9. V. Roppo, D. Dumay, J. Trull, C. Cojocaru, S. M. Saltiel, K. Staliunas, R. Vilaseca, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Planar second-harmonic generation with noncollinear pumps in disordered media,” Opt. Express 16, 14192–14199 (2008).
    [CrossRef]
  10. M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
    [CrossRef]
  11. A. Yariv, Optical Electronics, 4th ed. (Saunders College, 1991).
  12. J. Chen, Z. H. Levine, and J. W. Wilkins, “Calculated second–harmonic susceptibilities of BN, AlN, and GaN,” Appl. Phys. Lett. 66, 1129–1132 (1995).
    [CrossRef]
  13. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).
  14. W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
    [CrossRef]
  15. P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
    [CrossRef]
  16. H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26, 1892–1896 (2009).
    [CrossRef]
  17. S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, 1–79 (1999).
    [CrossRef]
  18. B. Monemar, “Optical properties of GaN,” Semicond. Semimet. 50, 305–368 (1997).
  19. L. C. Chao and A. J. Steckl, “CW blue–green light emission from GaN and SiC by sum frequency generation and second harmonic generation,” J. Electron. Mater. 29, 1059–1062 (2000).
    [CrossRef]
  20. K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
    [CrossRef]
  21. A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
    [CrossRef]
  22. H. Hubener, E. Luppi, and V. Veniard, “Ab initio calculation of many-body effects on the second-harmonic generation spectra of hexagonal SiC polytypes,” Phys. Rev. B 83, 115205 (2011).
    [CrossRef]
  23. E. Biedermann, “The optical absorption bands and their anisotropy in the various modifications of SiC,” Solid State Commun. 3, 343–346 (1965).
    [CrossRef]
  24. P. T. B. Shaffer, “Refractive index, dispersion and birefringence of silicon carbide polytypes,” Appl. Opt. 10, 1034–1037 (1971).
    [CrossRef]
  25. F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
    [CrossRef]
  26. P. F. Fewster, X-ray Scattering from Semiconductors, 2nd ed. (Imperial College, 2003), Chap. 4.3.1.

2012 (1)

2011 (1)

H. Hubener, E. Luppi, and V. Veniard, “Ab initio calculation of many-body effects on the second-harmonic generation spectra of hexagonal SiC polytypes,” Phys. Rev. B 83, 115205 (2011).
[CrossRef]

2009 (5)

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

H. Sato, M. Abe, I. Shoji, J. Suda, and T. Kondo, “Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide,” J. Opt. Soc. Am. B 26, 1892–1896 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

2008 (2)

2003 (1)

2000 (1)

L. C. Chao and A. J. Steckl, “CW blue–green light emission from GaN and SiC by sum frequency generation and second harmonic generation,” J. Electron. Mater. 29, 1059–1062 (2000).
[CrossRef]

1999 (3)

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, 1–79 (1999).
[CrossRef]

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
[CrossRef]

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

1997 (1)

B. Monemar, “Optical properties of GaN,” Semicond. Semimet. 50, 305–368 (1997).

1995 (1)

J. Chen, Z. H. Levine, and J. W. Wilkins, “Calculated second–harmonic susceptibilities of BN, AlN, and GaN,” Appl. Phys. Lett. 66, 1129–1132 (1995).
[CrossRef]

1971 (1)

1970 (1)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

1965 (1)

E. Biedermann, “The optical absorption bands and their anisotropy in the various modifications of SiC,” Solid State Commun. 3, 343–346 (1965).
[CrossRef]

1963 (1)

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Abe, M.

Angerer, W. E.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
[CrossRef]

Bauer, A.

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

Bechstedt, F.

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

Belardini, A.

Bertolotti, M.

Biedermann, E.

E. Biedermann, “The optical absorption bands and their anisotropy in the various modifications of SiC,” Solid State Commun. 3, 343–346 (1965).
[CrossRef]

Bostwick, A.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Bovino, F. A.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.

F. A. Bovino, M. Giardina, M. C. Larciprete, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” U.S. patentWO/2010/113190 (March31, 2009).

Cattaneo, S.

Centini, M.

Chao, L. C.

L. C. Chao and A. J. Steckl, “CW blue–green light emission from GaN and SiC by sum frequency generation and second harmonic generation,” J. Electron. Mater. 29, 1059–1062 (2000).
[CrossRef]

Chen, J.

J. Chen, Z. H. Levine, and J. W. Wilkins, “Calculated second–harmonic susceptibilities of BN, AlN, and GaN,” Appl. Phys. Lett. 66, 1129–1132 (1995).
[CrossRef]

Clays, K.

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques (CRC Press, 2009).

Cojocaru, C.

Dmitriev, V. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

Dumay, D.

Emtsev, K. V.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Fewster, P. F.

P. F. Fewster, X-ray Scattering from Semiconductors, 2nd ed. (Imperial College, 2003), Chap. 4.3.1.

Franken, P. A.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Gergely, C.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.

Giardina, M.

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.

F. A. Bovino, M. Giardina, M. C. Larciprete, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” U.S. patentWO/2010/113190 (March31, 2009).

Goetz, K.

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

Gurzadyan, G. G.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

Horn, K.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Hubener, H.

H. Hubener, E. Luppi, and V. Veniard, “Ab initio calculation of many-body effects on the second-harmonic generation spectra of hexagonal SiC polytypes,” Phys. Rev. B 83, 115205 (2011).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Jobst, J.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Kackell, P.

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

Kauranen, M.

Kellogg, G. L.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Khan, M. A.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
[CrossRef]

Kivshar, Y. S.

Kondo, T.

Krausslich, J.

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

Krolikowski, W.

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Kuschnerus, P.

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

Larciprete, M. C.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.

F. A. Bovino, M. Giardina, M. C. Larciprete, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” U.S. patentWO/2010/113190 (March31, 2009).

Levine, Z. H.

J. Chen, Z. H. Levine, and J. W. Wilkins, “Calculated second–harmonic susceptibilities of BN, AlN, and GaN,” Appl. Phys. Lett. 66, 1129–1132 (1995).
[CrossRef]

Ley, L.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Luppi, E.

H. Hubener, E. Luppi, and V. Veniard, “Ab initio calculation of many-body effects on the second-harmonic generation spectra of hexagonal SiC polytypes,” Phys. Rev. B 83, 115205 (2011).
[CrossRef]

McChesney, J. L.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Monemar, B.

B. Monemar, “Optical properties of GaN,” Semicond. Semimet. 50, 305–368 (1997).

Neshev, D. N.

Nikogosyan, D. N.

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

Ohta, T.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Passaseo, A.

Pearton, S. J.

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, 1–79 (1999).
[CrossRef]

Ren, F.

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, 1–79 (1999).
[CrossRef]

Reshanov, S. A.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Rodriguez, V.

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques (CRC Press, 2009).

Röhrl, J.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Roppo, V.

Rotenberg, E.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Saltiel, S. M.

Sato, H.

Schmid, A. K.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Seyller, T.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Shaffer, P. T. B.

Shoji, I.

Shul, R. J.

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, 1–79 (1999).
[CrossRef]

Sibilia, C.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

M. C. Larciprete, F. A. Bovino, M. Giardina, A. Belardini, M. Centini, C. Sibilia, M. Bertolotti, A. Passaseo, and V. Tasco, “Mapping the nonlinear optical susceptibility by noncollinear second-harmonic generation,” Opt. Lett. 34, 2189–2191 (2009).
[CrossRef]

M. C. Larciprete, F. A. Bovino, A. Belardini, C. Sibilia, and M. Bertolotti, “Bound and free waves in non-collinear second harmonic generation,” Opt. Express 17, 17000–17009 (2009).
[CrossRef]

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

F. A. Bovino, M. Giardina, M. C. Larciprete, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” U.S. patentWO/2010/113190 (March31, 2009).

F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.

Staliunas, K.

Steckl, A. J.

L. C. Chao and A. J. Steckl, “CW blue–green light emission from GaN and SiC by sum frequency generation and second harmonic generation,” J. Electron. Mater. 29, 1059–1062 (2000).
[CrossRef]

Suda, J.

Sun, C. J.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
[CrossRef]

Tasco, V.

Trull, J.

Varo, G.

F. A. Bovino, M. C. Larciprete, C. Sibilia, G. Varo, and C. Gergely, “Evidence of multipolar response of bacteriorhodopsin by noncollinear second harmonic generation,” Opt. Express 20, 14621–14631 (2012).
[CrossRef]

F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.

Veniard, V.

H. Hubener, E. Luppi, and V. Veniard, “Ab initio calculation of many-body effects on the second-harmonic generation spectra of hexagonal SiC polytypes,” Phys. Rev. B 83, 115205 (2011).
[CrossRef]

Verbiest, T.

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques (CRC Press, 2009).

Vilaseca, R.

Waldmann, D.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Ward, J. F.

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Weber, H. B.

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Wilkins, J. W.

J. Chen, Z. H. Levine, and J. W. Wilkins, “Calculated second–harmonic susceptibilities of BN, AlN, and GaN,” Appl. Phys. Lett. 66, 1129–1132 (1995).
[CrossRef]

Yang, N.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics, 4th ed. (Saunders College, 1991).

Yodh, A. G.

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
[CrossRef]

Zolper, J. C.

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, 1–79 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. A. Bovino, M. C. Larciprete, A. Belardini, and C. Sibilia, “Evaluation of the optical axis tilt of zinc oxide films via noncollinear second harmonic generation,” Appl. Phys. Lett. 94, 251109 (2009).
[CrossRef]

J. Chen, Z. H. Levine, and J. W. Wilkins, “Calculated second–harmonic susceptibilities of BN, AlN, and GaN,” Appl. Phys. Lett. 66, 1129–1132 (1995).
[CrossRef]

J. Appl. Phys. (2)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren, “GaN: processing, defects, and devices,” J. Appl. Phys. 86, 1–79 (1999).
[CrossRef]

J. Electron. Mater. (1)

L. C. Chao and A. J. Steckl, “CW blue–green light emission from GaN and SiC by sum frequency generation and second harmonic generation,” J. Electron. Mater. 29, 1059–1062 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Sci. Eng. B (1)

A. Bauer, J. Krausslich, P. Kuschnerus, K. Goetz, P. Kackell, and F. Bechstedt, “High-precision determination of atomic positions in 4H– and 6H–SiC crystals,” Mater. Sci. Eng. B 61, 217–220 (1999).
[CrossRef]

Nat. Mater. (1)

K. V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G. L. Kellogg, L. Ley, J. L. McChesney, T. Ohta, S. A. Reshanov, J. Röhrl, E. Rotenberg, A. K. Schmid, D. Waldmann, H. B. Weber, and T. Seyller, “Toward wafer-size graphene layers by atmospheric pressure graphitization of SiC,” Nat. Mater. 8, 203–207 (2009).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

W. E. Angerer, N. Yang, A. G. Yodh, M. A. Khan, and C. J. Sun, “Ultrafast second-harmonic generation spectroscopy of GaN thin films on sapphire,” Phys. Rev. B 59, 2932–2946 (1999).
[CrossRef]

H. Hubener, E. Luppi, and V. Veniard, “Ab initio calculation of many-body effects on the second-harmonic generation spectra of hexagonal SiC polytypes,” Phys. Rev. B 83, 115205 (2011).
[CrossRef]

Prog. Opt. (1)

M. Kauranen and S. Cattaneo, “Polarization techniques for surface nonlinear optics,” Prog. Opt. 51, 69–120 (2008).
[CrossRef]

Rev. Mod. Phys. (1)

P. A. Franken and J. F. Ward, “Optical harmonics and nonlinear phenomena,” Rev. Mod. Phys. 35, 23–39 (1963).
[CrossRef]

Semicond. Semimet. (1)

B. Monemar, “Optical properties of GaN,” Semicond. Semimet. 50, 305–368 (1997).

Solid State Commun. (1)

E. Biedermann, “The optical absorption bands and their anisotropy in the various modifications of SiC,” Solid State Commun. 3, 343–346 (1965).
[CrossRef]

Other (6)

P. F. Fewster, X-ray Scattering from Semiconductors, 2nd ed. (Imperial College, 2003), Chap. 4.3.1.

T. Verbiest, K. Clays, and V. Rodriguez, Second-Order Nonlinear Optical Characterization Techniques (CRC Press, 2009).

V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, Handbook of Nonlinear Optical Crystals (Springer, 1997).

F. A. Bovino, M. Giardina, M. C. Larciprete, and C. Sibilia, “Method and system for determining second-order nonlinear optical coefficients,” U.S. patentWO/2010/113190 (March31, 2009).

F. A. Bovino, M. C. Larciprete, C. Sibilia, M. Giardina, G. Varo, and C. Gergely, “Nonlinear ellipsometry by second harmonic generation,” in Nonlinear Optics, N. Kamanina, ed. (InTech, 2012), pp. 117–134.

A. Yariv, Optical Electronics, 4th ed. (Saunders College, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the spatial overlap of the pump beams in the noncollinear SHG: α˜ is the relative angle among the two beams, whose spot diameter is 2w0, and τ is related to the spatial overlap of the two pulses.

Fig. 2.
Fig. 2.

Calculated deff map (p polarization state) for a given bisector angle of α=35°, and for a relative angle among the two pump pulses of 18°, with the following values of the coefficients: d15=1.0, d24=1.1, d31=d32=1.1, d33=1.7=d31, for: (a) no axis rotation, (b) rotation around the y axis of 10°, (c) rotation around the x axis of 10°, and (d) the combined rotation: first a rotation around the x axis of 2° and then around the y axis of 8°. The arrows represent the direction of the maximum value shift of deff from the (a) case.

Fig. 3.
Fig. 3.

Transmission spectrum of 4H–SiC for both polarizations: p (blue curve), s (red curve).

Fig. 4.
Fig. 4.

Experimental p SHG map of 4H–SiC as a function of the polarization state ϕ of each pump beam (polarization map). The inset shows the angular scheme of the beams. The maximum signal value is found for ϕ10.07rad (ϕ14°) and ϕ20.07rad (ϕ24°).

Fig. 5.
Fig. 5.

(a) Calculated p SHG signal for 4H–SiC, introducing the rotation of the optical axis of 1° in the x and y directions; (b) Scheme of the double rotation of the optical axis in the x and y directions.

Fig. 6.
Fig. 6.

Omega peak position from x-ray rocking curves taken at different azimuth angles for the (004) reflection of 4H–SiC. The inset shows a single rocking curve with a FWHM of 130 arcsec.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I(2ω)Iϕ1Iϕ2(ω)|χeff(2)|2τ2Sinc2(Δkτ/2),
dij=[0000d150000d2400d31d32d33000],
dil=χ^ijk(2)2.
deffs(α)=1/2[(d15+d24)(sin(ϕ1)cos(ϕ2)sin(α2)+(d15d24)(cos(ϕ1)cos(ϕ2)sin((α1)+(α2))(d15+d24)(sin(ϕ2)sin(α1))],
deffP(α)=1/2[2sin(α)(cos(ϕ1)cos(ϕ2)(d31cos(α1)cos(α2)+d33sin(α1)sin(α2))+d31sin(ϕ1)sin(ϕ2))+cos(α)((d15d24)sin(α2)sin(ϕ1)cos(ϕ2)+cos(ϕ1)((d15+d24)cos(ϕ2)sin(α1+α2)+(d15d24)(sin(α1)sin(ϕ2)))],
deffP(α)=1/2[2sin(α)(d31cos(α1)cos(α2)+d33sin(α1)sin(α2))((d15+d24)(cos(α)sin(α1+α2))],
χl,n,m(2),lab=i,j,kRl,i(ψ,γ,δ)Rm,j(ψ,γ,δ)Rn,k(ψ,γ,δ)χi,j,k(2),crystal,
deffp,rot=14(2sin(α1)(2(r13+r23)cos(α)2r33sin(α))+cos(α2)((r14+r15+r24+r25)cos(α)+2(r34+r35)sin(α)))+cos(α1)(2sin(α2)((r14+r15+r24+r25)cos(α)+2(r34+r35)sin(α))+cos(α2)(2(r11+r12+2r16+r21+2r26)cos(α)2(r31+r31+2r36)sin(α)))).
deffp,rot=14(cos(α1)(2(r11+r12+r21+r22)cos(α)+2(r31r32)sin(α))+2sin(α1)((r14+r15r24+r25)cos(α)+2(r34r35)sin(α))).
R2={1i,jn,m[Iexp(ϕ1i,ϕ2j)ftheo(ϕ1i,ϕ2j)]2i,jn,m[Iexp(ϕ1i,ϕ2j)Iexp¯]2},
φmax=tan1{tan2φ0+tan2φ90},

Metrics