Abstract

We report on optimal control of the output energy of terahertz (THz) waves generated by optical rectification of femtosecond pulses in ZnTe crystals. An enhancement by a factor up to 2.4 is obtained with chirped pump pulses. The optimized THz wave also displays a spectral broadening. The influence of the optical pulse shaping on the pump pulse propagation, and consequently on the THz generation efficiency, is numerically investigated and discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
    [CrossRef]
  2. S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
    [CrossRef]
  3. S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe(110),” J. Appl. Phys. 107, 033526 (2010).
    [CrossRef]
  4. Z. Y. Zhao, S. Hameau, and J. Tignon, “THz generation by optical rectification and competition with other nonlinear processes,” Chin. Phys. Lett. 25, 1868–1870 (2008).
    [CrossRef]
  5. S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
    [CrossRef]
  6. D. N. Erschens, D. Turchinovich, and P. U. Jepsen, “Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped femtosecond laser pulse,” J. Infrared Millim. Terahertz Waves 32, 1371–1381 (2011).
    [CrossRef]
  7. S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulses generation,” J. Opt. Soc. Am. B 27, 1044–1050 (2010).
    [CrossRef]
  8. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
    [CrossRef]
  9. A. M. Weiner, “Femtosecond pulse shaping using spatial light odulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
    [CrossRef]
  10. A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671 (2004).
    [CrossRef]
  11. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  12. R. S. Judson and H. Rabitz, “Teaching laser to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
    [CrossRef]
  13. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive ultrashort pulse compression and shaping,” Opt. Commun. 138, 345–348 (1997).
    [CrossRef]
  14. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
    [CrossRef]
  15. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
    [CrossRef]
  16. D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
    [CrossRef]
  17. D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
    [CrossRef]
  18. J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
    [CrossRef]
  19. L. Yin and G. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
    [CrossRef]
  20. J. A. C. Weideman and B. M. Herbst, “Split-step method for the solution of the nonlinear Schrodinger equation,” SIAM J. Numer. Anal. 23, 485–507 (1986).
    [CrossRef]
  21. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
    [CrossRef]

2013

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

2011

D. N. Erschens, D. Turchinovich, and P. U. Jepsen, “Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped femtosecond laser pulse,” J. Infrared Millim. Terahertz Waves 32, 1371–1381 (2011).
[CrossRef]

S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
[CrossRef]

2010

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe(110),” J. Appl. Phys. 107, 033526 (2010).
[CrossRef]

S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulses generation,” J. Opt. Soc. Am. B 27, 1044–1050 (2010).
[CrossRef]

2008

Z. Y. Zhao, S. Hameau, and J. Tignon, “THz generation by optical rectification and competition with other nonlinear processes,” Chin. Phys. Lett. 25, 1868–1870 (2008).
[CrossRef]

2007

L. Yin and G. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
[CrossRef]

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
[CrossRef]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

2004

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671 (2004).
[CrossRef]

2003

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[CrossRef]

2001

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

2000

A. M. Weiner, “Femtosecond pulse shaping using spatial light odulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

1997

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive ultrashort pulse compression and shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

1996

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

1992

R. S. Judson and H. Rabitz, “Teaching laser to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef]

1986

J. A. C. Weideman and B. M. Herbst, “Split-step method for the solution of the nonlinear Schrodinger equation,” SIAM J. Numer. Anal. 23, 485–507 (1986).
[CrossRef]

Agrawal, G.

L. Yin and G. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
[CrossRef]

Arlt, S.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

Bardeen, C. J.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Baumann, B.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Brixner, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Carpenter, S. D.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Chatel, B.

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671 (2004).
[CrossRef]

Chen, J.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Chi, C. C.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Chu, W.-C.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Degert, J.

S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
[CrossRef]

S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulses generation,” J. Opt. Soc. Am. B 27, 1044–1050 (2010).
[CrossRef]

Erschens, D. N.

D. N. Erschens, D. Turchinovich, and P. U. Jepsen, “Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped femtosecond laser pulse,” J. Infrared Millim. Terahertz Waves 32, 1371–1381 (2011).
[CrossRef]

Fan, Y.-X.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Feurer, T.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Frey, S.

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Freysz, E.

S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
[CrossRef]

S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulses generation,” J. Opt. Soc. Am. B 27, 1044–1050 (2010).
[CrossRef]

Gerber, G.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Goswami, D.

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[CrossRef]

Gu, B.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Hacker, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Hameau, S.

Z. Y. Zhao, S. Hameau, and J. Tignon, “THz generation by optical rectification and competition with other nonlinear processes,” Chin. Phys. Lett. 25, 1868–1870 (2008).
[CrossRef]

Harrel, S. M.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe(110),” J. Appl. Phys. 107, 033526 (2010).
[CrossRef]

He, J.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Herbst, B. M.

J. A. C. Weideman and B. M. Herbst, “Split-step method for the solution of the nonlinear Schrodinger equation,” SIAM J. Numer. Anal. 23, 485–507 (1986).
[CrossRef]

Jepsen, P. U.

D. N. Erschens, D. Turchinovich, and P. U. Jepsen, “Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped femtosecond laser pulse,” J. Infrared Millim. Terahertz Waves 32, 1371–1381 (2011).
[CrossRef]

Ji, W.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching laser to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef]

Keller, U.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

Kobayashi, T.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Kompa, K.-L.

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Ku, S. A.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Kunde, J.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

Luo, C. W.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Meshulach, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive ultrashort pulse compression and shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Milot, R. L.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe(110),” J. Appl. Phys. 107, 033526 (2010).
[CrossRef]

Monmayrant, A.

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671 (2004).
[CrossRef]

Morier-Genoud, F.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

Motzkus, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Oberle, J.

S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
[CrossRef]

Oberlé, J.

S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulses generation,” J. Opt. Soc. Am. B 27, 1044–1050 (2010).
[CrossRef]

Rabitz, H.

R. S. Judson and H. Rabitz, “Teaching laser to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef]

Reichel, F.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Reimann, K.

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
[CrossRef]

Schleicher, J. M.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe(110),” J. Appl. Phys. 107, 033526 (2010).
[CrossRef]

Schmuttenmaer, C. A.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe(110),” J. Appl. Phys. 107, 033526 (2010).
[CrossRef]

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Siegner, U.

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

Silberberg, Y.

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive ultrashort pulse compression and shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Stobrawa, G.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Strehle, M.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Tignon, J.

Z. Y. Zhao, S. Hameau, and J. Tignon, “THz generation by optical rectification and competition with other nonlinear processes,” Chin. Phys. Lett. 25, 1868–1870 (2008).
[CrossRef]

Tondusson, M.

S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
[CrossRef]

Tu, C. M.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Turchinovich, D.

D. N. Erschens, D. Turchinovich, and P. U. Jepsen, “Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped femtosecond laser pulse,” J. Infrared Millim. Terahertz Waves 32, 1371–1381 (2011).
[CrossRef]

Vidal, S.

S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
[CrossRef]

S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulses generation,” J. Opt. Soc. Am. B 27, 1044–1050 (2010).
[CrossRef]

Wang, H.-T.

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

Warren, W. S.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Weber, P. M.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Weideman, J. A. C.

J. A. C. Weideman and B. M. Herbst, “Split-step method for the solution of the nonlinear Schrodinger equation,” SIAM J. Numer. Anal. 23, 485–507 (1986).
[CrossRef]

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light odulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Wilson, K. R.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Wu, K. H.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Yabushita, A.

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Yakovlev, V. V.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Yelin, D.

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive ultrashort pulse compression and shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Yin, L.

L. Yin and G. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
[CrossRef]

Zeidler, D.

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

Zhao, Z. Y.

Z. Y. Zhao, S. Hameau, and J. Tignon, “THz generation by optical rectification and competition with other nonlinear processes,” Chin. Phys. Lett. 25, 1868–1870 (2008).
[CrossRef]

Appl. Phys. B

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high resolution femtosecond pulse shaper,” Appl. Phys. B 72, 627–630 (2001).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B 65, 779–782 (1997).
[CrossRef]

Appl. Phys. Lett.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

S. Vidal, J. Degert, M. Tondusson, J. Oberle, and E. Freysz, “Impact of dispersion, free carriers and two-photon absorption on the generation of intense THz pulses in ZnTe crystals,” Appl. Phys. Lett. 98, 191103 (2011).
[CrossRef]

Chem. Phys. Lett.

C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, “Feedback quantum control of molecular electronic population transfer,” Chem. Phys. Lett. 280, 151–158 (1997).
[CrossRef]

Chin. Phys. Lett.

Z. Y. Zhao, S. Hameau, and J. Tignon, “THz generation by optical rectification and competition with other nonlinear processes,” Chin. Phys. Lett. 25, 1868–1870 (2008).
[CrossRef]

J. Appl. Phys.

S. M. Harrel, R. L. Milot, J. M. Schleicher, and C. A. Schmuttenmaer, “Influence of free-carrier absorption on terahertz generation from ZnTe(110),” J. Appl. Phys. 107, 033526 (2010).
[CrossRef]

B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, and W. Ji, “Z-scan theory of two-photon absorption saturation and experimental evidence,” J. Appl. Phys. 102, 083101 (2007).
[CrossRef]

J. Infrared Millim. Terahertz Waves

D. N. Erschens, D. Turchinovich, and P. U. Jepsen, “Optimized optical rectification and electro-optic sampling in ZnTe crystals with chirped femtosecond laser pulse,” J. Infrared Millim. Terahertz Waves 32, 1371–1381 (2011).
[CrossRef]

J. Opt. Soc. Am. B

S. Vidal, J. Degert, J. Oberlé, and E. Freysz, “Femtosecond optical pulse shaping for tunable terahertz pulses generation,” J. Opt. Soc. Am. B 27, 1044–1050 (2010).
[CrossRef]

J. Kunde, B. Baumann, S. Arlt, F. Morier-Genoud, U. Siegner, and U. Keller, “Optimization of adaptive feedback control for ultrafast semiconductor spectroscopy,” J. Opt. Soc. Am. B 18, 872–881 (2001).
[CrossRef]

Opt. Commun.

D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive ultrashort pulse compression and shaping,” Opt. Commun. 138, 345–348 (1997).
[CrossRef]

Opt. Express

S. A. Ku, C. M. Tu, W.-C. Chu, C. W. Luo, K. H. Wu, A. Yabushita, C. C. Chi, and T. Kobayashi, “Saturation of the free carrier absorption in ZnTe crystals,” Opt. Express 21, 13930–13937 (2013).
[CrossRef]

Opt. Lett.

L. Yin and G. Agrawal, “Impact of two-photon absorption on self-phase modulation in silicon waveguides,” Opt. Lett. 32, 2031–2033 (2007).
[CrossRef]

Phys. Rep.

D. Goswami, “Optical pulse shaping approaches to coherent control,” Phys. Rep. 374, 385–481 (2003).
[CrossRef]

Phys. Rev. A

D. Zeidler, S. Frey, K.-L. Kompa, and M. Motzkus, “Evolutionary algorithms and their application to optimal control studies,” Phys. Rev. A 64, 023420 (2001).
[CrossRef]

Phys. Rev. Lett.

R. S. Judson and H. Rabitz, “Teaching laser to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef]

Rep. Prog. Phys.

K. Reimann, “Table-top sources of ultrashort THz pulses,” Rep. Prog. Phys. 70, 1597–1632 (2007).
[CrossRef]

Rev. Sci. Instrum.

A. M. Weiner, “Femtosecond pulse shaping using spatial light odulators,” Rev. Sci. Instrum. 71, 1929–1960 (2000).
[CrossRef]

A. Monmayrant and B. Chatel, “New phase and amplitude high resolution pulse shaper,” Rev. Sci. Instrum. 75, 2668–2671 (2004).
[CrossRef]

SIAM J. Numer. Anal.

J. A. C. Weideman and B. M. Herbst, “Split-step method for the solution of the nonlinear Schrodinger equation,” SIAM J. Numer. Anal. 23, 485–507 (1986).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup developed for the optimization of the THz generation in a 1 mm thick ZnTe crystal.

Fig. 2.
Fig. 2.

Typical convergence curves for the optimization of the THz-wave energy generated in a 1 mm thick ZnTe crystal excited by pulses with fluences of 0.03mJ/cm2 (squares) and 1.75mJ/cm2 (dots), respectively.

Fig. 3.
Fig. 3.

THz power spectra and corresponding temporal waveforms (inset) generated in a 1 mm thick ZnTe crystal excited by a TL pulse (φ(2)=0fs2) (dark lines) and an optimized one (φ(2)=1700fs2) (red lines), both having an input fluence of 0.35mJ/cm2.

Fig. 4.
Fig. 4.

Evolution of the laser pulse intensity during its propagation through a 1 mm thick crystal (a) for an initial 0.035mJ/cm2 TL pulse (φ(2)=0fs2) and for the optimized one (GDD φ(2)=1100fs2); (b) for an initial 1.75mJ/cm2 TL pulse, and the corresponding optimized pulse (φ(2)=1750fs2). (c) Evolution of the laser pulse energy for an initial 0.035mJ/cm2 TL pulse and for the optimized one. (d) Evolution of the laser pulse energy for an initial 1.74mJ/cm2 TL pulse and for the optimized one.

Fig. 5.
Fig. 5.

Evolution of the Gaussian pulse duration (FWHM in intensity) during the propagation for a 35 fs, 0.035mJ/cm2 TL pulse (dashed line) and for pulses with GDD φ(2)=1100fs2 (blue squares) and φ(2)=1750fs2 (red circles).

Fig. 6.
Fig. 6.

Evolution of the diameter (FWHM in intensity) of the laser beam along the crystal for the TL and the optimized pulse under high input fluence. Inset: beam profile at the input and exit of the crystal for a TL pulse with high fluence (r=x2+y2).

Tables (2)

Tables Icon

Table 1. THz Energy Enhancement Factor Ropt for Different Input Fluences J and the Corresponding Optimized Values of the GDD

Tables Icon

Table 2. Laser Pump Energy Fraction Absorbed by TPA in the ZnTe Crystal

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

φ(ω)=n=251n!φ(n)(ωω0)n,
E(x,y,z,t)zi2k0ΔtE(x,y,z,t)+i2k02E(x,y,z,t)t2=12β|E(x,y,z,t)|2E(x,y,z,t).
E(x,y,z,t)=u(x,y,z)ε(z,t)exp[i(ω0tk0z)],
I(x,y,z,t)z=βII2(x,y,z,t)
βI=β01+I(x,y,z,t)/Isat,
ε(0,t)=FT1{ETL(0,ω)exp[iφ(2)2ω2]},

Metrics