Abstract

Cavity linewidth narrowing via double-dark resonances is experimentally observed using the Rb87 Zeeman splitting sublevels. With the steep dispersion led by the interacting dark resonances in the tripod-type electromagnetically induced transparency system, we narrow the cavity linewidth to 250 kHz at room temperature. Furthermore, the position of this ultranarrow cavity linewidth can be tuned in a 60 MHz coupling field detuning range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [CrossRef]
  2. M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
    [CrossRef]
  3. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
    [CrossRef]
  4. Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
    [CrossRef]
  5. Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
    [CrossRef]
  6. H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008).
  7. Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
    [CrossRef]
  8. Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
    [CrossRef]
  9. N. Mulchan, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, “Nonlinear excitation by quantum interference in a Doppler-broadened rubidium atomic system,” J. Opt. Soc. Am. B 17, 820–826 (2000).
    [CrossRef]
  10. Z. Wang, P. Li, H. Zheng, S. Sang, R. Zhang, Y. Zhang, and M. Xiao, “Interference of three multiwave mixings via electromagnetically induced transparency,” J. Opt. Soc. Am. B 28, 1922–1927 (2011).
    [CrossRef]
  11. Z. Zhang, X. Yang, and X. Yan, “Population transfer and generation of arbitrary superpositions of quantum states in a four-level system using a single-chirped laser pulse,” J. Opt. Soc. Am. B 30, 1017–1021 (2013).
    [CrossRef]
  12. G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
    [CrossRef]
  13. G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86, 053837 (2012).
    [CrossRef]
  14. X. Yang, Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012).
    [CrossRef]
  15. X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
    [CrossRef]
  16. J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
    [CrossRef]
  17. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
    [CrossRef]
  18. Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
    [CrossRef]
  19. E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
    [CrossRef]
  20. E. Paspalakis and P. L. Knight, “Transparency, slow light and enhanced nonlinear optics in a four-level scheme,” J. Opt. B Quant. Semiclass. Opt. 4, S372–S375 (2002).
  21. A. Fountoulakis, A. F. Terzis, and E. Paspalakis, “Coherent phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73, 033811 (2006).
    [CrossRef]
  22. C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A 69, 063802 (2004).
    [CrossRef]
  23. M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).
    [CrossRef]
  24. H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732–1734 (2000).
    [CrossRef]
  25. H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
    [CrossRef]
  26. G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
    [CrossRef]
  27. K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Tunable frequency reference by optical pumping-assisted intracavity V-type electromagnetically induced transparency,” http://arxiv.org/abs/1309.3336 .
  28. Y. Peng, L. Jina, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
    [CrossRef]

2013 (3)

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[CrossRef]

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

Z. Zhang, X. Yang, and X. Yan, “Population transfer and generation of arbitrary superpositions of quantum states in a four-level system using a single-chirped laser pulse,” J. Opt. Soc. Am. B 30, 1017–1021 (2013).
[CrossRef]

2012 (2)

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86, 053837 (2012).
[CrossRef]

X. Yang, Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012).
[CrossRef]

2011 (2)

2010 (1)

Y. Peng, L. Jina, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

2009 (1)

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

2008 (3)

H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008).

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

2007 (1)

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

2006 (1)

A. Fountoulakis, A. F. Terzis, and E. Paspalakis, “Coherent phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73, 033811 (2006).
[CrossRef]

2005 (2)

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

2004 (1)

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A 69, 063802 (2004).
[CrossRef]

2002 (2)

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

E. Paspalakis and P. L. Knight, “Transparency, slow light and enhanced nonlinear optics in a four-level scheme,” J. Opt. B Quant. Semiclass. Opt. 4, S372–S375 (2002).

2001 (1)

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

2000 (2)

1999 (1)

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

1998 (1)

1995 (1)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

1991 (1)

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Burkett, W. H.

Chen, Y. C.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Chiu, H. Y.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Du, Y.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Ducreay, D. G.

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Fleischhauer, M.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).
[CrossRef]

Fountoulakis, A.

A. Fountoulakis, A. F. Terzis, and E. Paspalakis, “Coherent phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73, 033811 (2006).
[CrossRef]

Friedmann, H.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A 69, 063802 (2004).
[CrossRef]

Gea-Banacloche, J.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Gong, S.

Y. Peng, L. Jina, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008).

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

Goorskey, D. J.

Goren, C.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A 69, 063802 (2004).
[CrossRef]

Halfmann, T.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[CrossRef]

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86, 053837 (2012).
[CrossRef]

Han, Y.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Heinze, G.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[CrossRef]

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86, 053837 (2012).
[CrossRef]

Hernandez, G.

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

Hubrich, C.

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[CrossRef]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

Jin, S.

H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008).

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Jina, L.

Y. Peng, L. Jina, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

Knight, P. L.

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

E. Paspalakis and P. L. Knight, “Transparency, slow light and enhanced nonlinear optics in a four-level scheme,” J. Opt. B Quant. Semiclass. Opt. 4, S372–S375 (2002).

Li, C.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Li, P.

Li, R.

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Liang, X.

Liao, Y. A.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Liu, Y.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Lu, K.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Lukin, M. D.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).
[CrossRef]

Mulchan, N.

Nie, Z.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Niu, Y.

Y. Peng, L. Jina, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008).

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

Y. Niu, S. Gong, R. Li, Z. Xu, and X. Liang, “Giant Kerr nonlinearity induced by interacting dark resonances,” Opt. Lett. 30, 3371–3373 (2005).
[CrossRef]

Paspalakis, E.

A. Fountoulakis, A. F. Terzis, and E. Paspalakis, “Coherent phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73, 033811 (2006).
[CrossRef]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

E. Paspalakis and P. L. Knight, “Transparency, slow light and enhanced nonlinear optics in a four-level scheme,” J. Opt. B Quant. Semiclass. Opt. 4, S372–S375 (2002).

Peng, K.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Peng, Y.

Y. Peng, L. Jina, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

Pina, R.

Rentzsch, N.

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86, 053837 (2012).
[CrossRef]

Rosenbluh, M.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A 69, 063802 (2004).
[CrossRef]

Sang, S.

Scully, M. O.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

M. D. Lukin, M. Fleischhauer, M. O. Scully, and V. L. Velichansky, “Intracavity electromagnetically induced transparency,” Opt. Lett. 23, 295–297 (1998).
[CrossRef]

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef]

Sheng, J.

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

Shi, M.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Song, J.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Su, J. J.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Sun, H.

H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008).

Terzis, A. F.

A. Fountoulakis, A. F. Terzis, and E. Paspalakis, “Coherent phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73, 033811 (2006).
[CrossRef]

Velichansky, V. L.

Wang, H.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732–1734 (2000).
[CrossRef]

Wang, R.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Wang, Z.

Wilson-Gordon, A. D.

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A 69, 063802 (2004).
[CrossRef]

Wu, H.

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

Xiao, J.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Xiao, M.

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

X. Yang, Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012).
[CrossRef]

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

Z. Wang, P. Li, H. Zheng, S. Sang, R. Zhang, Y. Zhang, and M. Xiao, “Interference of three multiwave mixings via electromagnetically induced transparency,” J. Opt. Soc. Am. B 28, 1922–1927 (2011).
[CrossRef]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

H. Wang, D. J. Goorskey, W. H. Burkett, and M. Xiao, “Cavity-linewidth narrowing by means of electromagnetically induced transparency,” Opt. Lett. 25, 1732–1734 (2000).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

Xu, Z.

Yan, M.

Yan, X.

Yang, X.

Z. Zhang, X. Yang, and X. Yan, “Population transfer and generation of arbitrary superpositions of quantum states in a four-level system using a single-chirped laser pulse,” J. Opt. Soc. Am. B 30, 1017–1021 (2013).
[CrossRef]

X. Yang, Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012).
[CrossRef]

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

Yelin, S. F.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Yu, I. A.

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

Zhang, C.

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Zhang, J.

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

Zhang, R.

Zhang, Y.

Z. Wang, P. Li, H. Zheng, S. Sang, R. Zhang, Y. Zhang, and M. Xiao, “Interference of three multiwave mixings via electromagnetically induced transparency,” J. Opt. Soc. Am. B 28, 1922–1927 (2011).
[CrossRef]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Zhang, Z.

Zheng, H.

Z. Wang, P. Li, H. Zheng, S. Sang, R. Zhang, Y. Zhang, and M. Xiao, “Interference of three multiwave mixings via electromagnetically induced transparency,” J. Opt. Soc. Am. B 28, 1922–1927 (2011).
[CrossRef]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Zhou, Y.

X. Yang, Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012).
[CrossRef]

Zhu, Y.

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

N. Mulchan, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, “Nonlinear excitation by quantum interference in a Doppler-broadened rubidium atomic system,” J. Opt. Soc. Am. B 17, 820–826 (2000).
[CrossRef]

Zuo, C.

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

J. Mod. Opt. (1)

Y. Peng, L. Jina, Y. Niu, and S. Gong, “Tunable ultranarrow linewidth of a cavity induced by interacting dark resonances,” J. Mod. Opt. 57, 641–645 (2010).
[CrossRef]

J. Opt. B Quant. Semiclass. Opt. (1)

E. Paspalakis and P. L. Knight, “Transparency, slow light and enhanced nonlinear optics in a four-level scheme,” J. Opt. B Quant. Semiclass. Opt. 4, S372–S375 (2002).

J. Opt. Soc. Am. B (3)

J. Phys. B (1)

H. Sun, Y. Niu, S. Jin, and S. Gong, “Phase control of the Kerr nonlinearity in electromagnetically induced transparency media,” J. Phys. B 41, 065504 (2008).

Laser Phys. Lett. (1)

J. Sheng and M. Xiao, “Amplification of the intracavity dark-state field by a four-wave mixing process,” Laser Phys. Lett. 10, 055402 (2013).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (12)

G. Hernandez, J. Zhang, and Y. Zhu, “Vacuum Rabi splitting and intracavity dark state in a cavity-atom system,” Phys. Rev. A 76, 053814 (2007).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001).
[CrossRef]

E. Paspalakis and P. L. Knight, “Electromagnetically induced transparency and controlled group velocity in a multilevel system,” Phys. Rev. A 66, 015802 (2002).
[CrossRef]

A. Fountoulakis, A. F. Terzis, and E. Paspalakis, “Coherent phenomena due to double-dark states in a system with decay interference,” Phys. Rev. A 73, 033811 (2006).
[CrossRef]

C. Goren, A. D. Wilson-Gordon, M. Rosenbluh, and H. Friedmann, “Sub-Doppler and subnatural narrowing of an absorption line induced by interacting dark resonances in a tripod system,” Phys. Rev. A 69, 063802 (2004).
[CrossRef]

Y. Niu, R. Li, and S. Gong, “High efficiency four-wave mixing induced by double-dark resonances in a five-level tripod system,” Phys. Rev. A 71, 043819 (2005).
[CrossRef]

G. Heinze, N. Rentzsch, and T. Halfmann, “Multiplexed image storage by electromagnetically induced transparency in a solid,” Phys. Rev. A 86, 053837 (2012).
[CrossRef]

X. Yang, Y. Zhou, and M. Xiao, “Generation of multipartite continuous-variable entanglement via atomic spin wave,” Phys. Rev. A 85, 052307 (2012).
[CrossRef]

X. Yang, J. Sheng, and M. Xiao, “Electromagnetically induced absorption via incoherent collisions,” Phys. Rev. A 84, 043837 (2011).
[CrossRef]

Y. Han, J. Xiao, Y. Liu, C. Zhang, H. Wang, M. Xiao, and K. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008).
[CrossRef]

Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman-sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009).
[CrossRef]

Phys. Rev. Lett. (5)

S. E. Harris, J. E. Field, and A. Imamoğlu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef]

M. O. Scully, “Enhancement of the index of refraction via quantum coherence,” Phys. Rev. Lett. 67, 1855–1858 (1991).
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995).
[CrossRef]

G. Heinze, C. Hubrich, and T. Halfmann, “Stopped light and image storage by electromagnetically induced transparency up to the regime of one minute,” Phys. Rev. Lett. 111, 033601 (2013).
[CrossRef]

H. Wu, J. Gea-Banacloche, and M. Xiao, “Observation of intracavity electromagnetically induced transparency and polariton resonances in a Doppler-broadened medium,” Phys. Rev. Lett. 100, 173602 (2008).
[CrossRef]

Other (1)

K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, and S. Gong, “Tunable frequency reference by optical pumping-assisted intracavity V-type electromagnetically induced transparency,” http://arxiv.org/abs/1309.3336 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Relevant energy levels of Rb87 for our experiment.

Fig. 2.
Fig. 2.

Detailed polarization states of three optical beams: p (probe beam Ep), 1 (coupling beam E1), 2 (coupling beam E2), PBS (polarizing cubic beam splitter), QWP1, QWP2 (QWPs), M (mini reflective mirror reflecting coupling beam E2), AR-Rb (antireflection-coated Rb vapor cell).

Fig. 3.
Fig. 3.

Schematic diagram of the experimental setup: PB1–PB4 (polarizing cubic beam splitters); HWP1–HWP3 (half-wave plates); QWP1, QWP2 (QWPs); AOM (acoustic optical modulator); PD (photodiode detector); OI (optical isolator); M1, M2 (cavity mirrors); M3 (mini reflective mirror); AR-Rb (antireflection-coated Rb vapor cell).

Fig. 4.
Fig. 4.

Tripod-type EIT system for our experiment: Ep (probe beam), E1, E2 (coupling beams).

Fig. 5.
Fig. 5.

Two transparency windows induced by the double-dark resonances EIT system: the right window (Δp=Δ2) is much narrower than the left one (Δp=Δ1), as E2=0.49mW is weaker than E1=1.63mW.

Fig. 6.
Fig. 6.

Intensity of cavity output versus probe field detuning showing the CTS linewidth narrowing in different conditions.

Fig. 7.
Fig. 7.

Cavity linewidth versus the detuning of the coupling field.

Fig. 8.
Fig. 8.

Zeeman sublevels coupled by circularly polarized light.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔωC11+ω0(l/2L)η,
Iout(ω0)=Iin(ω,ω0)·T(ω)dω,
Iout(ω0)=Iin(ω,ω0)·T(ω)dω=Iin(ωω0)·T(ω)dω=Iin(ω0ω)·T(ω)dω=Iin(ω0)*T(ω0),

Metrics