Abstract

We report on the generation of a bright photon source at telecom wavelengths using spontaneous parametric down-conversion in a type II periodically poled potassium titanyl phosphate crystal. Simultaneous resonances of the pump and the two down-converted fields are achieved with a properly designed optical cavity. This triple-resonance optical parametric oscillator operates far below threshold, generating photon pairs at 1560 nm wavelength with a bandwidth of 8 MHz. Time correlation measurements produce an estimate of 27.7 ns for the coherence time, and production rate of 134±25s1MHz1mW1 for photon pairs. As photon pairs in the telecom regime are suitable for long-distance transmission, this source may find application in quantum communications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
    [CrossRef]
  2. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).
  3. H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
    [CrossRef]
  4. C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
    [CrossRef]
  5. B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
    [CrossRef]
  6. D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
    [CrossRef]
  7. J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006).
    [CrossRef]
  8. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
    [CrossRef]
  9. Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atom ensemble,” Opt. Express 16, 21708–21713 (2008).
    [CrossRef]
  10. X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009).
    [CrossRef]
  11. D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20, 11433–11444 (2012).
    [CrossRef]
  12. O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
    [CrossRef]
  13. R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
    [CrossRef]
  14. Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
    [CrossRef]
  15. Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
    [CrossRef]
  16. H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
    [CrossRef]
  17. C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
    [CrossRef]
  18. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Tahakashi, A. I. Vistnes, and E. S. Polzik, “High purity bright photon source,” Opt. Express 15, 7940–7949 (2007).
    [CrossRef]
  19. F. Y. Wang, B. S. Shi, and G. C. Guo, “Observation of time correlation function of multi-mode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008).
    [CrossRef]
  20. B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008).
    [CrossRef]
  21. X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
    [CrossRef]
  22. F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283, 2974–2977 (2010).
    [CrossRef]
  23. M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultra-bright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102, 063603 (2009).
    [CrossRef]
  24. M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009).
    [CrossRef]
  25. F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008).
    [CrossRef]
  26. Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric down conversion,” Laser Phys. 20, 1221–1233 (2010).
    [CrossRef]
  27. E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
    [CrossRef]
  28. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  29. U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77, 023826 (2008).
    [CrossRef]
  30. A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55–57 (2009).
    [CrossRef]

2012

2010

Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric down conversion,” Laser Phys. 20, 1221–1233 (2010).
[CrossRef]

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283, 2974–2977 (2010).
[CrossRef]

2009

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultra-bright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102, 063603 (2009).
[CrossRef]

M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009).
[CrossRef]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009).
[CrossRef]

A. Haase, N. Piro, J. Eschner, and M. W. Mitchell, “Tunable narrowband entangled photon pair source for resonant single-photon single-atom interaction,” Opt. Lett. 34, 55–57 (2009).
[CrossRef]

2008

F. Y. Wang, B. S. Shi, and G. C. Guo, “Observation of time correlation function of multi-mode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008).
[CrossRef]

F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008).
[CrossRef]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atom ensemble,” Opt. Express 16, 21708–21713 (2008).
[CrossRef]

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77, 023826 (2008).
[CrossRef]

B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008).
[CrossRef]

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
[CrossRef]

2007

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

J. S. Neergaard-Nielsen, B. M. Nielsen, H. Tahakashi, A. I. Vistnes, and E. S. Polzik, “High purity bright photon source,” Opt. Express 15, 7940–7949 (2007).
[CrossRef]

2006

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[CrossRef]

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

2004

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

2003

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

2000

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

1999

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[CrossRef]

1998

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1970

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Afzelius, M.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

Andre, A.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

Atkinson, P.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

Bao, X. H.

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Benson, O.

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultra-bright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102, 063603 (2009).
[CrossRef]

M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009).
[CrossRef]

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77, 023826 (2008).
[CrossRef]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

Briegel, H. J.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Cere, A.

Chen, Q. F.

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009).
[CrossRef]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atom ensemble,” Opt. Express 16, 21708–21713 (2008).
[CrossRef]

Chen, Z. B.

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

Cirac, J. I.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Cooper, K.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

de Riedmatten, H.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

Ding, D. S.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Duan, L. M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

Dür, W.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Eisaman, M. D.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

Eschner, J.

Feng, M.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Gisin, N.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

Guo, G. C.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20, 11433–11444 (2012).
[CrossRef]

F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283, 2974–2977 (2010).
[CrossRef]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009).
[CrossRef]

F. Y. Wang, B. S. Shi, and G. C. Guo, “Observation of time correlation function of multi-mode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008).
[CrossRef]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atom ensemble,” Opt. Express 16, 21708–21713 (2008).
[CrossRef]

B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008).
[CrossRef]

Haase, A.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Herzog, U.

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77, 023826 (2008).
[CrossRef]

Horikiri, T.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Jeronimo-Moreno, Y.

Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric down conversion,” Laser Phys. 20, 1221–1233 (2010).
[CrossRef]

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

Kobayashi, T.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

Koch, L.

M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009).
[CrossRef]

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultra-bright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102, 063603 (2009).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kuklewicz, C. E.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[CrossRef]

Kuzmich, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

Lauritzen, B.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

Loh, H.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006).
[CrossRef]

Lu, X. S.

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009).
[CrossRef]

Lu, Y. J.

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[CrossRef]

Lukin, M. D.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

Minar, J.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

Mitchell, M. W.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Neergaard-Nielsen, J. S.

Nielsen, B. M.

Ou, Z. Y.

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[CrossRef]

Pan, J. W.

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Pelton, M.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Phillips, D. F.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

Piro, N.

Polzik, E. S.

Pomarico, E.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Predojevic, A.

Qian, Y.

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Ritchie, D. A.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

Rodriguez-Bebavides, S.

Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric down conversion,” Laser Phys. 20, 1221–1233 (2010).
[CrossRef]

Sangouard, N.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

Sanguinetti, B.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Santori, C.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Scholz, M.

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultra-bright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102, 063603 (2009).
[CrossRef]

M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009).
[CrossRef]

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77, 023826 (2008).
[CrossRef]

Schreiber, G.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Shapiro, J. H.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[CrossRef]

Shi, B. S.

D. S. Ding, Z. Y. Zhou, B. S. Shi, X. B. Zou, and G. C. Guo, “Generation of non-classical correlated photon pairs via a ladder-type atomic configuration: theory and experiment,” Opt. Express 20, 11433–11444 (2012).
[CrossRef]

F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283, 2974–2977 (2010).
[CrossRef]

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009).
[CrossRef]

F. Y. Wang, B. S. Shi, and G. C. Guo, “Observation of time correlation function of multi-mode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008).
[CrossRef]

Q. F. Chen, B. S. Shi, M. Feng, Y. S. Zhang, and G. C. Guo, “Non-degenerated nonclassical photon pairs in a hot atom ensemble,” Opt. Express 16, 21708–21713 (2008).
[CrossRef]

B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008).
[CrossRef]

Shields, A. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

Simon, C.

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

Simon, J.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006).
[CrossRef]

Sohler, W.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Staudt, M. U.

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
[CrossRef]

Steinberg, A. M.

Stevenson, R. M.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

Tahakashi, H.

Thew, R.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Thomas, A.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Thompson, J. K.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006).
[CrossRef]

U’Ren, A. B.

Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric down conversion,” Laser Phys. 20, 1221–1233 (2010).
[CrossRef]

Ullmann, R.

M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009).
[CrossRef]

van der Wal, C. H.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

Vistnes, A. I.

Vuletic, V.

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006).
[CrossRef]

Walsworth, R. L.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

Wang, F. Y.

F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283, 2974–2977 (2010).
[CrossRef]

F. Y. Wang, B. S. Shi, and G. C. Guo, “Observation of time correlation function of multi-mode two-photon pairs on a rubidium D2 line,” Opt. Lett. 33, 2191–2193 (2008).
[CrossRef]

B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008).
[CrossRef]

Wang, H.

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

Wolfgramm, F.

Wong, F. N. C.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[CrossRef]

Xing, X.

Yamamoto, Y.

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

Yang, J.

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Yang, T.

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Young, R. J.

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

Zbinden, H.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

Zhai, C.

B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008).
[CrossRef]

Zhang, H.

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

Zhang, Y. S.

Zhou, Z. Y.

Zibrov, A. S.

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

Zoller, P.

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

Zou, X. B.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Appl. Phys. Lett.

M. Scholz, L. Koch, R. Ullmann, and O. Benson, “Single-mode operation of a high-brightness narrow-band single-photon source,” Appl. Phys. Lett. 94, 201105 (2009).
[CrossRef]

Chin. Phys. Lett.

X. S. Lu, Q. F. Chen, B. S. Shi, and G. C. Guo, “Generation of a non-classical correlated photon pair via spontaneous four-wave mixing in a cold atom ensemble,” Chin. Phys. Lett. 26, 064204 (2009).
[CrossRef]

Laser Phys.

Y. Jeronimo-Moreno, S. Rodriguez-Bebavides, and A. B. U’Ren, “Theory of cavity-enhanced spontaneous parametric down conversion,” Laser Phys. 20, 1221–1233 (2010).
[CrossRef]

Nature

H. de Riedmatten, M. Afzelius, M. U. Staudt, C. Simon, and N. Gisin, “A solid-state light-matter interface at the single photon level,” Nature 456, 773–777 (2008).
[CrossRef]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L. M. Duan, and H. J. Kimble, “Generation of nonclassical photon pairs for scalable quantum communication with atom ensembles,” Nature 423, 731–734 (2003).
[CrossRef]

R. M. Stevenson, R. J. Young, P. Atkinson, K. Cooper, D. A. Ritchie, and A. J. Shields, “A semiconductor source of triggered entangled photon pairs,” Nature 439, 179–182 (2006).
[CrossRef]

New J. Phys.

E. Pomarico, B. Sanguinetti, N. Gisin, R. Thew, H. Zbinden, G. Schreiber, A. Thomas, and W. Sohler, “Waveguide-based OPO source of entangled photon pairs,” New J. Phys. 11, 113042 (2009).
[CrossRef]

Opt. Commun.

B. S. Shi, F. Y. Wang, C. Zhai, and G. C. Guo, “An ultra-bright two photon source with a type-I bulk periodically poled potassium titanyl phosphate,” Opt. Commun. 281, 3390–3394 (2008).
[CrossRef]

F. Y. Wang, B. S. Shi, and G. C. Guo, “Generation of narrow-band photon pairs for quantum memory,” Opt. Commun. 283, 2974–2977 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

U. Herzog, M. Scholz, and O. Benson, “Theory of biphoton generation in a single-resonant optical parametric oscillator far below threshold,” Phys. Rev. A 77, 023826 (2008).
[CrossRef]

Y. J. Lu and Z. Y. Ou, “Optical parametric oscillator far below threshold: experiment versus theory,” Phys. Rev. A 62, 033804 (2000).
[CrossRef]

H. Wang, T. Horikiri, and T. Kobayashi, “Polarization-entangled mode-locked photons from cavity-enhanced spontaneous parametric down-conversion,” Phys. Rev. A 70, 043804 (2004).
[CrossRef]

Phys. Rev. Lett.

C. E. Kuklewicz, F. N. C. Wong, and J. H. Shapiro, “Time-bin-modulated biphotons from cavity-enhanced down-conversion,” Phys. Rev. Lett. 97, 223601 (2006).
[CrossRef]

Z. Y. Ou and Y. J. Lu, “Cavity enhanced spontaneous parametric down-conversion for the prolongation of correlation time between conjugate photons,” Phys. Rev. Lett. 83, 2556–2559 (1999).
[CrossRef]

M. Scholz, L. Koch, and O. Benson, “Statistics of narrow-band single photons for quantum memories generated by ultra-bright cavity-enhanced parametric down-conversion,” Phys. Rev. Lett. 102, 063603 (2009).
[CrossRef]

X. H. Bao, Y. Qian, J. Yang, H. Zhang, Z. B. Chen, T. Yang, and J. W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef]

O. Benson, C. Santori, M. Pelton, and Y. Yamamoto, “Regulated and entangled photons from a single quantum dot,” Phys. Rev. Lett. 84, 2513–2516 (2000).
[CrossRef]

B. Lauritzen, J. Minar, H. de Riedmatten, M. Afzelius, N. Sangouard, C. Simon, and N. Gisin, “Telecommunication-wavelength solid-state memory at the single photon level,” Phys. Rev. Lett. 104, 080502 (2010).
[CrossRef]

D. C. Burnham and D. L. Weinberg, “Observation of simultaneity in parametric production of optical photon pairs,” Phys. Rev. Lett. 25, 84–87 (1970).
[CrossRef]

H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998).
[CrossRef]

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98, 190563 (2007).

Science

C. H. van der Wal, M. D. Eisaman, A. Andre, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon state,” Science 301, 196–200 (2003).
[CrossRef]

J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, “A high-brightness source of narrowband identical-photon pairs,” Science 313, 74–77 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Temperature dependence of SHG power. The green stars are experimental data, and the red line is a fit using the sinc2 function.

Fig. 2.
Fig. 2.

Experimental setup of the single-pass SPDC experiment. HWP, half-wave plate; L1, L2, lens; BPF, bandpass filter; PBS, polarization beam splitter; SMF1, SMF2, single-mode fibers.

Fig. 3.
Fig. 3.

Total coincidence counts and accidental coincidences per 60 s as a function of pump power.

Fig. 4.
Fig. 4.

Transmission spectra of (a) the pump at 780 nm and (b) the down-converted beam at 1560 nm.

Fig. 5.
Fig. 5.

Experimental setup of the OPO system. C1, main cavity; C2, filter cavity; EOM, electrical optical modulator; HWP, half-wave plate; DM1, DM2, dichromatic mirror; D1, 1560 nm photodiode; D2, 780 nm photodiode; PZT, piezoelectric transducer; LPF, long pass filter; FPBS, fiber polarization beam splitter; FPC, fiber polarization controller; SMF, single-mode fiber; APD1, APD2, avalanche photodiodes; DG535, delay generator.

Fig. 6.
Fig. 6.

Coincidence count per 300 s as a function of the signal-idler delay. Red triangles indicate experimental data, and the black solid line is the simulation curve obtained using Eq. (3) with parameter values for our experiment.

Fig. 7.
Fig. 7.

(a) Coincidence counts per 200 s as a function of pump power. Black squares are measured data with accidental coincidences, red diamonds are corresponding accidental coincidence counts, and green solid line is a linear fit to data. (b) SNR as a function of pump power.

Fig. 8.
Fig. 8.

Single counts per 10 s as a function of the KTP crystal temperature; the temperature of the PPKTP crystal is kept constant.

Fig. 9.
Fig. 9.

Coincidence counts with accidental coincidences per 900 s as a function of signal-idler delay. The solid line is a fit using function e2πγ|τ|.

Tables (2)

Tables Icon

Table 1. Value of Different Loss Factors

Tables Icon

Table 2. Comparison between the Main Recently Reported OPO-Based or Filtered Narrow-Band Photon Pair Sources Using Different Criteria

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Gs,i(2)(τ)=Ψ|Ei()(t)Es()(t+τ)Es(+)(t+τ)Ei(+)(t)|Ψ|mS,mI=γSγIωSωIΓS+ΓI{e2πΓS(τ(τ0/2))sinc(iπτ0ΓS)e2πΓI(τ(τ0/2))sinc(iπτ0ΓI)ττ0/2τ<τ0/2|2,
h(t)=κet2σ2,
Γ(t)=C+Gs,i(2)(τ)h(tτ)dτ,

Metrics