Abstract

We study ultrafast coherent-plasmonic dynamics of hybrid systems consisting of one semiconductor quantum dot and one metallic nanoshell when they interact with a laser field with a step-like amplitude rise. It is shown that such dynamics is generated when quantum coherence in these systems can generate a retarded super-enhanced local field. This process happens in the picosecond range when the applied laser field ceases to be time-dependent. We show such a field generates a strong impulse, leading to a dramatic upheaval of the collective properties of the system. These include ultrafast oscillations of the effective transition energy and linewidth of the quantum dot, and generation of a polarization pulse. Within this pulse the Förster resonance energy transfer from the quantum dot to the nanoshell happens at a significantly high rate, while after that it is blocked nearly completely. We study the collective molecular resonances of this system using Rayleigh scattering and show how the frequency of the field impulse can be tuned. The intrinsic differences between such resonances and those involving spherical metallic nanoparticles are discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
    [CrossRef]
  2. A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620–625 (2007).
    [CrossRef]
  3. K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single cdse/zns nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008).
    [CrossRef]
  4. T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
    [CrossRef]
  5. U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
    [CrossRef]
  6. S. M. Sadeghi and R. G. West, “Coherent control of forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys. Condens. Matter 23, 425302 (2011).
    [CrossRef]
  7. M.-T. Cheng, S.-D. Liu, H.-J. Zhou, H.-J. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007).
    [CrossRef]
  8. S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot–metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
    [CrossRef]
  9. S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticles conjugates,” Phys. Rev. B 79, 233309 (2009).
    [CrossRef]
  10. S. M. Sadeghi, “Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton-plasmon coupling,” Phys. Rev. A 88, 013831 (2013).
    [CrossRef]
  11. Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
    [CrossRef]
  12. Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
    [CrossRef]
  13. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
    [CrossRef]
  14. A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
    [CrossRef]
  15. J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012).
    [CrossRef]
  16. Z. Wang and B. Yu, “Switching from optical bistability to multistability in a coupled semiconductor double-quantum-dot nanostructure,” J. Opt. Soc. Am. B 30, 2915–2920 (2013).
    [CrossRef]
  17. M. R. Singh, “Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system,” Nanotechnology 24, 125701 (2013).
    [CrossRef]
  18. S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
    [CrossRef]
  19. M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
    [CrossRef]
  20. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
    [CrossRef]
  21. R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
    [CrossRef]
  22. S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
    [CrossRef]
  23. W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
    [CrossRef]
  24. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
    [CrossRef]
  25. A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology 23, 205203 (2012).
    [CrossRef]
  26. Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nanoscale Res. Lett. 7, 95 (2012).
    [CrossRef]
  27. S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013).
    [CrossRef]
  28. A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012).
    [CrossRef]
  29. S. M. Sadeghi, “Control of energy dissipation in nanoparticle optical devices: nearly loss-free switching and modulation,” J. Nanopart. Res 14, 1184 (2012).
    [CrossRef]
  30. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
    [CrossRef]
  31. A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013).
    [CrossRef]
  32. S. M. Sadeghi, “Plasmonically induced gain without inversion in quantum dots,” Nanotechnology 21, 455401 (2010).
    [CrossRef]
  33. A. Pernice, J. Helm, and W. T. Strunz, “Models of decoherence with negative dephasing rate,” arXiv:1202.4280 (2012).
  34. S. M. Sadeghi, “Plasmonic meta-resonance nanosensors: ultra-sensitive sensors based on nanoparticle molecules,” IEEE Trans. Nanotechnol. 10, 566–571 (2011).
    [CrossRef]

2013 (6)

S. M. Sadeghi, “Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton-plasmon coupling,” Phys. Rev. A 88, 013831 (2013).
[CrossRef]

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Z. Wang and B. Yu, “Switching from optical bistability to multistability in a coupled semiconductor double-quantum-dot nanostructure,” J. Opt. Soc. Am. B 30, 2915–2920 (2013).
[CrossRef]

M. R. Singh, “Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system,” Nanotechnology 24, 125701 (2013).
[CrossRef]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013).
[CrossRef]

A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013).
[CrossRef]

2012 (6)

J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, and Q.-Q. Wang, “Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems,” Opt. Express 20, 1856–1861 (2012).
[CrossRef]

A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012).
[CrossRef]

S. M. Sadeghi, “Control of energy dissipation in nanoparticle optical devices: nearly loss-free switching and modulation,” J. Nanopart. Res 14, 1184 (2012).
[CrossRef]

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology 23, 205203 (2012).
[CrossRef]

Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nanoscale Res. Lett. 7, 95 (2012).
[CrossRef]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[CrossRef]

2011 (5)

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[CrossRef]

S. M. Sadeghi and R. G. West, “Coherent control of forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys. Condens. Matter 23, 425302 (2011).
[CrossRef]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[CrossRef]

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[CrossRef]

S. M. Sadeghi, “Plasmonic meta-resonance nanosensors: ultra-sensitive sensors based on nanoparticle molecules,” IEEE Trans. Nanotechnol. 10, 566–571 (2011).
[CrossRef]

2010 (3)

S. M. Sadeghi, “Plasmonically induced gain without inversion in quantum dots,” Nanotechnology 21, 455401 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

2009 (5)

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot–metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticles conjugates,” Phys. Rev. B 79, 233309 (2009).
[CrossRef]

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

2008 (3)

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single cdse/zns nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008).
[CrossRef]

2007 (3)

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620–625 (2007).
[CrossRef]

M.-T. Cheng, S.-D. Liu, H.-J. Zhou, H.-J. Hao, and Q.-Q. Wang, “Coherent exciton-plasmon interaction in the hybrid semiconductor quantum dot and metal nanoparticle complex,” Opt. Lett. 32, 2125–2127 (2007).
[CrossRef]

2006 (2)

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Abstreiter, G.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Arinaga, K.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

Boulais, E.

A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013).
[CrossRef]

Bryant, G. W.

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Cao, Z.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Carmeli, I.

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620–625 (2007).
[CrossRef]

Cheng, M.-T.

Deng, L.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Di Stefano, O.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Duan, S.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

English, D. S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

Evangelou, S.

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[CrossRef]

Fina, N.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Fujita, S.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Govorov, A. O.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620–625 (2007).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Grimes, A. F.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

Hao, H.-J.

Hao, Z.-H.

Hatef, A.

A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013).
[CrossRef]

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology 23, 205203 (2012).
[CrossRef]

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[CrossRef]

He, Y.

Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nanoscale Res. Lett. 7, 95 (2012).
[CrossRef]

Helm, J.

A. Pernice, J. Helm, and W. T. Strunz, “Models of decoherence with negative dephasing rate,” arXiv:1202.4280 (2012).

Higashiya, S.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

Huang, W.-P.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Ito, Y.

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single cdse/zns nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008).
[CrossRef]

Kaer, P.

A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012).
[CrossRef]

Kaiser, W.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Kanemitsu, Y.

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single cdse/zns nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008).
[CrossRef]

Kim, N.-C.

Knezevic, J.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Kosionis, S. G.

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013).
[CrossRef]

Kotov, N. A.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Lee, J.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Li, J.-B.

Li, X.

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

Liu, S.-D.

Lorke, M.

A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012).
[CrossRef]

Lu, Z.

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

Malyshev, A. V.

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[CrossRef]

Malyshev, V. A.

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[CrossRef]

Matsuda, K.

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single cdse/zns nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008).
[CrossRef]

Mattoussi, H.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

Medintz, I. L.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

Meunier, M.

A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013).
[CrossRef]

Moelbjerg, A.

A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012).
[CrossRef]

Mork, J.

A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012).
[CrossRef]

Naik, R. R.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Paspalakis, E.

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013).
[CrossRef]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[CrossRef]

Pernice, A.

A. Pernice, J. Helm, and W. T. Strunz, “Models of decoherence with negative dephasing rate,” arXiv:1202.4280 (2012).

Pons, T.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

Pringsheim, E.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Rant, U.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Ridolfo, A.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Sadeghi, S. M.

A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013).
[CrossRef]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013).
[CrossRef]

S. M. Sadeghi, “Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton-plasmon coupling,” Phys. Rev. A 88, 013831 (2013).
[CrossRef]

S. M. Sadeghi, “Control of energy dissipation in nanoparticle optical devices: nearly loss-free switching and modulation,” J. Nanopart. Res 14, 1184 (2012).
[CrossRef]

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology 23, 205203 (2012).
[CrossRef]

S. M. Sadeghi, “Plasmonic meta-resonance nanosensors: ultra-sensitive sensors based on nanoparticle molecules,” IEEE Trans. Nanotechnol. 10, 566–571 (2011).
[CrossRef]

S. M. Sadeghi and R. G. West, “Coherent control of forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys. Condens. Matter 23, 425302 (2011).
[CrossRef]

S. M. Sadeghi, “Plasmonically induced gain without inversion in quantum dots,” Nanotechnology 21, 455401 (2010).
[CrossRef]

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot–metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticles conjugates,” Phys. Rev. B 79, 233309 (2009).
[CrossRef]

Saija, R.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Sapsford, K. E.

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

Savasta, S.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

Schindel, D. G.

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[CrossRef]

Singh, M. R.

M. R. Singh, “Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system,” Nanotechnology 24, 125701 (2013).
[CrossRef]

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology 23, 205203 (2012).
[CrossRef]

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[CrossRef]

Skeini, T.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Slocik, J. M.

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

Strunz, W. T.

A. Pernice, J. Helm, and W. T. Strunz, “Models of decoherence with negative dephasing rate,” arXiv:1202.4280 (2012).

Terzis, A. F.

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013).
[CrossRef]

Tornow, M.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Wang, Q.-Q.

Wang, Z.

Z. Wang and B. Yu, “Switching from optical bistability to multistability in a coupled semiconductor double-quantum-dot nanostructure,” J. Opt. Soc. Am. B 30, 2915–2920 (2013).
[CrossRef]

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

West, R. G.

S. M. Sadeghi and R. G. West, “Coherent control of forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys. Condens. Matter 23, 425302 (2011).
[CrossRef]

Wu, X.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Yan, J.-Y.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Yannopapas, V.

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[CrossRef]

Yokoyama, N.

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

Yu, B.

Z. Wang and B. Yu, “Switching from optical bistability to multistability in a coupled semiconductor double-quantum-dot nanostructure,” J. Opt. Soc. Am. B 30, 2915–2920 (2013).
[CrossRef]

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Zhang, W.

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Zhao, X.-G.

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Zhen, S.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Zhou, H.-J.

Zhou, L.

Zhu, J.

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Zhu, K.-D.

Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nanoscale Res. Lett. 7, 95 (2012).
[CrossRef]

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

Appl. Phys. Lett. (2)

K. Matsuda, Y. Ito, and Y. Kanemitsu, “Photoluminescence enhancement and quenching of single cdse/zns nanocrystals on metal surfaces dominated by plasmon resonant energy transfer,” Appl. Phys. Lett. 92, 211911 (2008).
[CrossRef]

M. R. Singh, D. G. Schindel, and A. Hatef, “Dipole-dipole interaction in a quantum dot and metallic nanorod hybrid system,” Appl. Phys. Lett. 99, 181106 (2011).
[CrossRef]

IEEE Trans. Nanotechnol. (1)

S. M. Sadeghi, “Plasmonic meta-resonance nanosensors: ultra-sensitive sensors based on nanoparticle molecules,” IEEE Trans. Nanotechnol. 10, 566–571 (2011).
[CrossRef]

J. Nanopart. Res (1)

S. M. Sadeghi, “Control of energy dissipation in nanoparticle optical devices: nearly loss-free switching and modulation,” J. Nanopart. Res 14, 1184 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

Z. Lu and K.-D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

J. Phys. Condens. Matter (2)

S. M. Sadeghi and R. G. West, “Coherent control of forster energy transfer in nanoparticle molecules: energy nanogates and plasmonic heat pulses,” J. Phys. Condens. Matter 23, 425302 (2011).
[CrossRef]

S. G. Kosionis, A. F. Terzis, S. M. Sadeghi, and E. Paspalakis, “Optical response of a quantum dot-metal nanoparticle hybrid interacting with a weak probe field,” J. Phys. Condens. Matter 25, 045304 (2013).
[CrossRef]

Nano Lett. (5)

T. Pons, I. L. Medintz, K. E. Sapsford, S. Higashiya, A. F. Grimes, D. S. English, and H. Mattoussi, “On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles,” Nano Lett. 7, 3157–3164 (2007).
[CrossRef]

U. Rant, E. Pringsheim, W. Kaiser, K. Arinaga, J. Knezevic, M. Tornow, S. Fujita, N. Yokoyama, and G. Abstreiter, “Detection and size analysis of proteins with switchable DNA layers,” Nano Lett. 9, 1290–1295 (2009).
[CrossRef]

A. O. Govorov, G. W. Bryant, W. Zhang, T. Skeini, J. Lee, N. A. Kotov, J. M. Slocik, and R. R. Naik, “Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies,” Nano Lett. 6, 984–994 (2006).
[CrossRef]

A. O. Govorov and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620–625 (2007).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot metal nanoparticle systems: double peaked Fano structure and bistability,” Nano Lett. 8, 2106–2111 (2008).
[CrossRef]

Nanoscale Res. Lett. (1)

Y. He and K.-D. Zhu, “Strong coupling among semiconductor quantum dots induced by a metal nanoparticle,” Nanoscale Res. Lett. 7, 95 (2012).
[CrossRef]

Nanotechnology (6)

A. Hatef, S. M. Sadeghi, and M. R. Singh, “Coherent molecular resonances in quantum dot–metallic nanoparticle systems: coherent self-renormalization and structural effects,” Nanotechnology 23, 205203 (2012).
[CrossRef]

S. M. Sadeghi, L. Deng, X. Li, and W.-P. Huang, “Plasmonic (thermal) electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems,” Nanotechnology 20, 365401 (2009).
[CrossRef]

A. Hatef, S. M. Sadeghi, E. Boulais, and M. Meunier, “Quantum dot–metallic nanorod sensors via exciton plasmon interaction,” Nanotechnology 24, 015502 (2013).
[CrossRef]

S. M. Sadeghi, “Plasmonically induced gain without inversion in quantum dots,” Nanotechnology 21, 455401 (2010).
[CrossRef]

M. R. Singh, “Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system,” Nanotechnology 24, 125701 (2013).
[CrossRef]

S. M. Sadeghi, “The inhibition of optical excitations and enhancement of Rabi flopping in hybrid quantum dot–metallic nanoparticle systems,” Nanotechnology 20, 225401 (2009).
[CrossRef]

Opt. Commun. (1)

Z. Wang, S. Zhen, X. Wu, J. Zhu, Z. Cao, and B. Yu, “Controllable optical bistability via tunneling induced transparency in quantum dot molecules,” Opt. Commun. 304, 7–10 (2013).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

S. M. Sadeghi, “Ultrafast plasmonic field oscillations and optics of molecular resonances caused by coherent exciton-plasmon coupling,” Phys. Rev. A 88, 013831 (2013).
[CrossRef]

S. Evangelou, V. Yannopapas, and E. Paspalakis, “Transparency and slow light in a four-level quantum system near a plasmonic nanostructure,” Phys. Rev. A 86, 053811 (2012).
[CrossRef]

Phys. Rev. B (5)

A. V. Malyshev and V. A. Malyshev, “Optical bistability and hysteresis of a hybrid metal-semiconductor nanodimer,” Phys. Rev. B 84, 035314 (2011).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: molecular resonances in quantum dot-metallic nanoparticles conjugates,” Phys. Rev. B 79, 233309 (2009).
[CrossRef]

W. Zhang and A. O. Govorov, “Quantum theory of the nonlinear Fano effect in hybrid metal-semiconductor nanostructures: the case of strong nonlinearity,” Phys. Rev. B 84, 081405 (2011).
[CrossRef]

J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

R. D. Artuso and G. W. Bryant, “Strongly coupled quantum dot-metal nanoparticle systems: exciton-induced transparency, discontinuous response, and suppression as driven quantum oscillator effects,” Phys. Rev. B 82, 195419 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the Fano effect on photon statistics,” Phys. Rev. Lett. 105, 263601 (2010).
[CrossRef]

A. Moelbjerg, P. Kaer, M. Lorke, and J. Mork, “Resonance fluorescence from semiconductor quantum dots: beyond the Mollow triplet,” Phys. Rev. Lett. 108, 017401 (2012).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef]

Other (1)

A. Pernice, J. Helm, and W. T. Strunz, “Models of decoherence with negative dephasing rate,” arXiv:1202.4280 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic illustration of the QD-NS system. The two-side arrow refers to the coherent exciton–plasmon coupling in this system.

Fig. 2.
Fig. 2.

Variation of the intensities of (a) applied laser field and (b) the field experienced by the QD as a function of time in the QD-MNP system. The legends show the intensity of laser after its rise. 1, 2, and 3 in (b) correspond to the intensity of 20.5 (1), 9.75 (2), and 9.74 (3).

Fig. 3.
Fig. 3.

Variation of the intensities of (a) applied laser field and (b) the field experienced by the QD as a function of time in the QD-NS system. The legends show the intensity of the laser after its rise. Labels 1, 2, and 3 in (b) correspond to intensities of 25.99 (1), 23.78 (2), and 23.72 (3).

Fig. 4.
Fig. 4.

(a) Variation of Ieff as function of time and (b) its zoom-in. The inset shows the applied field. All other specifications are the same as those in Fig. 3.

Fig. 5.
Fig. 5.

Variation of the time delay as a function of the applied field intensity for the QD-MNP (solid line) and QD-NS (dashed line).

Fig. 6.
Fig. 6.

Variation of (a) Δeff and (b) Λeff as a function of time when I0=9.74W/cm2 for the QD-MNP system and 23.72W/cm2 for the QD-NS system. The inset shows the zoom-in of the regions outlined by the dotted squares. All specifications are the same as those in Fig. 2.

Fig. 7.
Fig. 7.

Variation of (a) Im[ρ21] and (b) ΣF with time for different laser intensities in the QD-NS system. The insets show the zoom-ins of the results for I0=32.09W/cm2.

Fig. 8.
Fig. 8.

Comparison of the oscillation phases of (a) Ieff, (b) Im[ρ21], (c) Λeff, (d) ΣF, and (e) ρ22 when I0=32.09W/cm2. All other specifications are the same as those in Fig. 7.

Fig. 9.
Fig. 9.

RS of the QD-MNP system considered in Fig. 2 as a function of the laser frequency when I0=11.55W/cm2. The thick line in (a) shows the result when the MNP in isolated, and the thin line represents RS of the QD-MNP system. (b) shows the results for the region where enhancement of the RS occurs as a function of I0 (legends in W/cm2). Here lines 1, 2, 3, 4, and 5 are associated, respectively, to I0=15.72, 11.55, 9.35, 8.02, and 6.79W/cm2, respectively.

Fig. 10.
Fig. 10.

RS of the QD-NS system considered in Fig. 3 as a function of the laser frequency for I0=25.99Wc/cm2. The thick line in (a) shows the result when the NS is isolated, and the thin line represents the RS of the QD-NS system. (b) shows the results for the region where the sharp spike in the inset of Fig. 8(a) happens as I0 is varied.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dρdt=i[H(ρ),ρ(t)]+(£ρ)(ρ).
H(ρ)=j=1,2ωjσij+[Ω12r(ρ)σ21+H.C.],
βNS=R23[R13(εcεm)(ε0+2εm)R23(ε0εm)(εc+2εm)]2R13(ε0εm)(εc+εm)+R23(2ε0+εm)(εc+2εm).
(£ρ)(ρ)=Γ22(2σ12ρσ21σ21σ12ρρσ21σ12)+γ12dep4(2σzρσzσzσzρρσzσz).
ρ˙11=2Im[Ωeffρ21]+ΣF+Γ2ρ22Γ1ρ11,
ρ˙22=2Im[Ωeffρ21]ΣFΓ2ρ22,
ρ˙21=[iΔeff+Λeff]ρ21iΩeffδ.
Δeff=ω12Re[ηNS]δωl.
Λeff=Im[ηNS]δ+γ12,
Pcoh=|1+2βNSR3+ηNSΩ120ρ21|2.
P=(ck4)[βNSE02+(2βNSεeffR3+1)μ12ρ21]2,

Metrics