Abstract

In order to meet the demands for laser manipulations and detection of cold molecules, we propose an optically accessible and controllable electrostatic surface storage ring for cold polar molecules on a chip, which is one based on extension and application of the three-wire surface guiding scheme [J. Opt. Soc. Am. B 25, 1214 (2008)]. To our knowledge, this is the first real surface storage ring scheme. The spatial distribution of the electrostatic fields generated by two insulator-embedded charged rings and a grounded conductor plate is numerically calculated. Relationships between the height of the trap center above the surface and the setup parameters are analyzed in detail. Using OH radical molecules as a tester, the range of molecular velocities that the storage ring can confine is investigated. The dynamical process of weak-field-seeking OH molecules of state |J,KM=|3/2,9/4 being loaded into and confined in the storage ring is studied using Monte Carlo simulations. Dependencies of translational temperature of molecules and their trapping efficiency in the storage ring on parameters of the setup and the initial molecular beam are examined. By incorporating a bunching function into our scheme, the number of round trips a trapped molecular packet makes can be improved by almost three times before getting spread out to fill the whole storage ring, as confirmed by numerical simulations.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Schnell and G. Meijer, “Cold molecules: preparation, applications, and challenges,” Angew. Chem. Int. Ed. 48, 6010–6031 (2009).
    [CrossRef]
  2. J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
    [CrossRef]
  3. J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
    [CrossRef]
  4. S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
    [CrossRef]
  5. R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
    [CrossRef]
  6. H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709–2712 (2000).
    [CrossRef]
  7. T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
    [CrossRef]
  8. M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
    [CrossRef]
  9. M. Sun and J. Yin, “Controllable surface guiding for cold polar molecules with four charged wires,” J. Opt. Soc. Am. B 25, 1214–1222 (2008).
    [CrossRef]
  10. S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
    [CrossRef]
  11. H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
    [CrossRef]
  12. H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
    [CrossRef]
  13. J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, “Versatile electrostatic trap,” Phys. Rev. A 73, 063408 (2006).
    [CrossRef]
  14. T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
    [CrossRef]
  15. S. A. Meek, H. Conrad, and G. Meijer, “Trapping molecules on a chip,” Science 324, 1699–1702 (2009).
    [CrossRef]
  16. F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, “A prototype storage ring for neutral molecules,” Nature 411, 174–176 (2001).
    [CrossRef]
  17. D. P. Katz, “A storage ring for polar molecules,” J. Chem. Phys. 107, 8491–8501 (1997).
    [CrossRef]
  18. F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
    [CrossRef]
  19. C. E. Heiner, G. Meijer, and H. L. Bethlem, “Motional resonances in a molecular synchrotron,” Phys. Rev. A 78, 030702 (2008).
    [CrossRef]
  20. P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
    [CrossRef]
  21. S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, “Surface-induced heating of cold polar molecules,” Phys. Rev. A 78, 052901 (2008).
    [CrossRef]
  22. Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
    [CrossRef]
  23. L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
    [CrossRef]
  24. S. A. Meek, H. Conrad, and G. Meijer, “A Stark decelerator on a chip,” New J. Phys. 11, 055024 (2009).
    [CrossRef]
  25. S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
    [CrossRef]
  26. S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, “Trapping molecules on a chip in traveling potential wells,” Phys. Rev. Lett. 100, 153003 (2008).
    [CrossRef]
  27. L. Deng, Y. Xia, and J. Yin, “Electrostatic surface storage ring for cold polar molecules,” J. Opt. Soc. Am. B 27, A88–A92 (2010).
    [CrossRef]
  28. M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
    [CrossRef]
  29. P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, “Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2,” J. Chem. Phys. 95, 5763–5774 (1991).
    [CrossRef]
  30. D. M. Sonnenforth, R. G. Macdonald, and K. Liu, “Fine-structure selectivity in polyatomic reaction products: CN(X2Σ+, v=0, N=0, 1)+O2→NCO (X2Π3/2,0010, J, e/f)+O,” J. Chem. Phys. 93, 1478–1479 (1990).
    [CrossRef]
  31. J. J. ter Meulen, W. L. Meerts, G. W. M. van Mierlo, and A. Dymanus, “Observations of population inversion between the Λ-doublet states of OH,” Phys. Rev. Lett. 36, 1031–1034 (1976).
    [CrossRef]
  32. M. C. van Beek and J. J. ter Meulen, “An intense pulsed electrical discharge source for OH molecular beams,” Chem. Phys. Lett. 337, 237–242 (2001).
    [CrossRef]
  33. H. J. Lewandowski, E. R. Hudson, J. R. Bochinski, and J. Ye, “A pulsed, low-temperature beam of supersonically cooled free radical OH molecules,” Chem. Phys. Lett. 395, 53–57 (2004).
    [CrossRef]
  34. J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, and J. Ye, “Cold free-radical molecules in the laboratory frame,” Phys. Rev. A 70, 043410 (2004).
    [CrossRef]
  35. K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
    [CrossRef]
  36. S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
    [CrossRef]

2012 (1)

S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
[CrossRef]

2011 (1)

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

2010 (2)

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

L. Deng, Y. Xia, and J. Yin, “Electrostatic surface storage ring for cold polar molecules,” J. Opt. Soc. Am. B 27, A88–A92 (2010).
[CrossRef]

2009 (3)

S. A. Meek, H. Conrad, and G. Meijer, “A Stark decelerator on a chip,” New J. Phys. 11, 055024 (2009).
[CrossRef]

M. Schnell and G. Meijer, “Cold molecules: preparation, applications, and challenges,” Angew. Chem. Int. Ed. 48, 6010–6031 (2009).
[CrossRef]

S. A. Meek, H. Conrad, and G. Meijer, “Trapping molecules on a chip,” Science 324, 1699–1702 (2009).
[CrossRef]

2008 (9)

C. E. Heiner, G. Meijer, and H. L. Bethlem, “Motional resonances in a molecular synchrotron,” Phys. Rev. A 78, 030702 (2008).
[CrossRef]

S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, “Trapping molecules on a chip in traveling potential wells,” Phys. Rev. Lett. 100, 153003 (2008).
[CrossRef]

S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, “Surface-induced heating of cold polar molecules,” Phys. Rev. A 78, 052901 (2008).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

M. Sun and J. Yin, “Controllable surface guiding for cold polar molecules with four charged wires,” J. Opt. Soc. Am. B 25, 1214–1222 (2008).
[CrossRef]

K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
[CrossRef]

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef]

R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
[CrossRef]

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

2006 (2)

J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
[CrossRef]

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, “Versatile electrostatic trap,” Phys. Rev. A 73, 063408 (2006).
[CrossRef]

2005 (2)

T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
[CrossRef]

S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
[CrossRef]

2004 (6)

H. J. Lewandowski, E. R. Hudson, J. R. Bochinski, and J. Ye, “A pulsed, low-temperature beam of supersonically cooled free radical OH molecules,” Chem. Phys. Lett. 395, 53–57 (2004).
[CrossRef]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, and J. Ye, “Cold free-radical molecules in the laboratory frame,” Phys. Rev. A 70, 043410 (2004).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
[CrossRef]

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

2002 (1)

H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
[CrossRef]

2001 (2)

F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, “A prototype storage ring for neutral molecules,” Nature 411, 174–176 (2001).
[CrossRef]

M. C. van Beek and J. J. ter Meulen, “An intense pulsed electrical discharge source for OH molecular beams,” Chem. Phys. Lett. 337, 237–242 (2001).
[CrossRef]

2000 (2)

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709–2712 (2000).
[CrossRef]

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

1997 (1)

D. P. Katz, “A storage ring for polar molecules,” J. Chem. Phys. 107, 8491–8501 (1997).
[CrossRef]

1993 (1)

M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
[CrossRef]

1991 (1)

P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, “Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2,” J. Chem. Phys. 95, 5763–5774 (1991).
[CrossRef]

1990 (1)

D. M. Sonnenforth, R. G. Macdonald, and K. Liu, “Fine-structure selectivity in polyatomic reaction products: CN(X2Σ+, v=0, N=0, 1)+O2→NCO (X2Π3/2,0010, J, e/f)+O,” J. Chem. Phys. 93, 1478–1479 (1990).
[CrossRef]

1976 (1)

J. J. ter Meulen, W. L. Meerts, G. W. M. van Mierlo, and A. Dymanus, “Observations of population inversion between the Λ-doublet states of OH,” Phys. Rev. Lett. 36, 1031–1034 (1976).
[CrossRef]

Alagia, M.

M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
[CrossRef]

Allmendinger, P.

S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
[CrossRef]

Anderson, P.

P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, “Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2,” J. Chem. Phys. 95, 5763–5774 (1991).
[CrossRef]

Aristov, N.

P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, “Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2,” J. Chem. Phys. 95, 5763–5774 (1991).
[CrossRef]

Balucani, N.

M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
[CrossRef]

Bell, M. T.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef]

Berden, G.

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

Bethlem, H. L.

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

C. E. Heiner, G. Meijer, and H. L. Bethlem, “Motional resonances in a molecular synchrotron,” Phys. Rev. A 78, 030702 (2008).
[CrossRef]

S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, “Trapping molecules on a chip in traveling potential wells,” Phys. Rev. Lett. 100, 153003 (2008).
[CrossRef]

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, “Versatile electrostatic trap,” Phys. Rev. A 73, 063408 (2006).
[CrossRef]

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
[CrossRef]

H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, “A prototype storage ring for neutral molecules,” Nature 411, 174–176 (2001).
[CrossRef]

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

Beushausen, D.

P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, “Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2,” J. Chem. Phys. 95, 5763–5774 (1991).
[CrossRef]

Bochinski, J. R.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, and J. Ye, “Cold free-radical molecules in the laboratory frame,” Phys. Rev. A 70, 043410 (2004).
[CrossRef]

H. J. Lewandowski, E. R. Hudson, J. R. Bochinski, and J. Ye, “A pulsed, low-temperature beam of supersonically cooled free radical OH molecules,” Chem. Phys. Lett. 395, 53–57 (2004).
[CrossRef]

Buhmann, S. Y.

S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, “Surface-induced heating of cold polar molecules,” Phys. Rev. A 78, 052901 (2008).
[CrossRef]

Casavecchia, P.

M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
[CrossRef]

Chen, H.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Conrad, H.

S. A. Meek, H. Conrad, and G. Meijer, “Trapping molecules on a chip,” Science 324, 1699–1702 (2009).
[CrossRef]

S. A. Meek, H. Conrad, and G. Meijer, “A Stark decelerator on a chip,” New J. Phys. 11, 055024 (2009).
[CrossRef]

S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, “Trapping molecules on a chip in traveling potential wells,” Phys. Rev. Lett. 100, 153003 (2008).
[CrossRef]

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

Crompvoets, F. M. H.

F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
[CrossRef]

H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, “A prototype storage ring for neutral molecules,” Nature 411, 174–176 (2001).
[CrossRef]

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

Deng, L.

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

L. Deng, Y. Xia, and J. Yin, “Electrostatic surface storage ring for cold polar molecules,” J. Opt. Soc. Am. B 27, A88–A92 (2010).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Dymanus, A.

J. J. ter Meulen, W. L. Meerts, G. W. M. van Mierlo, and A. Dymanus, “Observations of population inversion between the Λ-doublet states of OH,” Phys. Rev. Lett. 36, 1031–1034 (1976).
[CrossRef]

Filsinger, F.

K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
[CrossRef]

Gilijamse, J. J.

J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
[CrossRef]

Gingell, A. D.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef]

Gratz, F.

K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
[CrossRef]

Groenenboom, G. C.

J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
[CrossRef]

Gu, Z.

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

Heiner, C. E.

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

C. E. Heiner, G. Meijer, and H. L. Bethlem, “Motional resonances in a molecular synchrotron,” Phys. Rev. A 78, 030702 (2008).
[CrossRef]

Hinds, E. A.

S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, “Surface-induced heating of cold polar molecules,” Phys. Rev. A 78, 052901 (2008).
[CrossRef]

Hoekstra, S.

J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
[CrossRef]

Hogan, S. D.

S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
[CrossRef]

Hou, S.

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

Hudson, E. R.

H. J. Lewandowski, E. R. Hudson, J. R. Bochinski, and J. Ye, “A pulsed, low-temperature beam of supersonically cooled free radical OH molecules,” Chem. Phys. Lett. 395, 53–57 (2004).
[CrossRef]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, and J. Ye, “Cold free-radical molecules in the laboratory frame,” Phys. Rev. A 70, 043410 (2004).
[CrossRef]

Jongma, R. T.

S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
[CrossRef]

H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, “A prototype storage ring for neutral molecules,” Nature 411, 174–176 (2001).
[CrossRef]

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

Junglen, T.

T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

Katz, D. P.

D. P. Katz, “A storage ring for polar molecules,” J. Chem. Phys. 107, 8491–8501 (1997).
[CrossRef]

Kupper, J.

K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
[CrossRef]

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
[CrossRef]

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

Lewandowski, H. J.

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, and J. Ye, “Cold free-radical molecules in the laboratory frame,” Phys. Rev. A 70, 043410 (2004).
[CrossRef]

H. J. Lewandowski, E. R. Hudson, J. R. Bochinski, and J. Ye, “A pulsed, low-temperature beam of supersonically cooled free radical OH molecules,” Chem. Phys. Lett. 395, 53–57 (2004).
[CrossRef]

Li, S.

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

Liang, Y.

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

Liu, K.

D. M. Sonnenforth, R. G. Macdonald, and K. Liu, “Fine-structure selectivity in polyatomic reaction products: CN(X2Σ+, v=0, N=0, 1)+O2→NCO (X2Π3/2,0010, J, e/f)+O,” J. Chem. Phys. 93, 1478–1479 (1990).
[CrossRef]

Loesch, H. J.

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709–2712 (2000).
[CrossRef]

Lulf, H. W.

P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, “Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2,” J. Chem. Phys. 95, 5763–5774 (1991).
[CrossRef]

Macdonald, R. G.

D. M. Sonnenforth, R. G. Macdonald, and K. Liu, “Fine-structure selectivity in polyatomic reaction products: CN(X2Σ+, v=0, N=0, 1)+O2→NCO (X2Π3/2,0010, J, e/f)+O,” J. Chem. Phys. 93, 1478–1479 (1990).
[CrossRef]

Meek, S. A.

S. A. Meek, H. Conrad, and G. Meijer, “Trapping molecules on a chip,” Science 324, 1699–1702 (2009).
[CrossRef]

S. A. Meek, H. Conrad, and G. Meijer, “A Stark decelerator on a chip,” New J. Phys. 11, 055024 (2009).
[CrossRef]

S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, “Trapping molecules on a chip in traveling potential wells,” Phys. Rev. Lett. 100, 153003 (2008).
[CrossRef]

Meerts, W. L.

J. J. ter Meulen, W. L. Meerts, G. W. M. van Mierlo, and A. Dymanus, “Observations of population inversion between the Λ-doublet states of OH,” Phys. Rev. Lett. 36, 1031–1034 (1976).
[CrossRef]

Meijer, G.

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

S. A. Meek, H. Conrad, and G. Meijer, “A Stark decelerator on a chip,” New J. Phys. 11, 055024 (2009).
[CrossRef]

M. Schnell and G. Meijer, “Cold molecules: preparation, applications, and challenges,” Angew. Chem. Int. Ed. 48, 6010–6031 (2009).
[CrossRef]

S. A. Meek, H. Conrad, and G. Meijer, “Trapping molecules on a chip,” Science 324, 1699–1702 (2009).
[CrossRef]

S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, “Trapping molecules on a chip in traveling potential wells,” Phys. Rev. Lett. 100, 153003 (2008).
[CrossRef]

C. E. Heiner, G. Meijer, and H. L. Bethlem, “Motional resonances in a molecular synchrotron,” Phys. Rev. A 78, 030702 (2008).
[CrossRef]

K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
[CrossRef]

J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
[CrossRef]

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, “Versatile electrostatic trap,” Phys. Rev. A 73, 063408 (2006).
[CrossRef]

S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
[CrossRef]

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
[CrossRef]

H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, “A prototype storage ring for neutral molecules,” Nature 411, 174–176 (2001).
[CrossRef]

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

Merkt, F.

S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
[CrossRef]

Mikosch, J.

R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
[CrossRef]

Otto, R.

R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
[CrossRef]

Pinkse, P. W. H.

T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

Procter, S. R.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef]

Rangwala, S. A.

T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

Rempe, G.

T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

Rieger, T.

T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

Sartakov, B.

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

Saßmannshausen, H.

S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
[CrossRef]

Scheel, B.

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709–2712 (2000).
[CrossRef]

Scheel, S.

S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, “Surface-induced heating of cold polar molecules,” Phys. Rev. A 78, 052901 (2008).
[CrossRef]

Schmutz, H.

S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
[CrossRef]

Schnell, M.

M. Schnell and G. Meijer, “Cold molecules: preparation, applications, and challenges,” Angew. Chem. Int. Ed. 48, 6010–6031 (2009).
[CrossRef]

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, “Versatile electrostatic trap,” Phys. Rev. A 73, 063408 (2006).
[CrossRef]

Schulz, S. A.

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

Smeets, P. H. M.

S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
[CrossRef]

Softley, T. P.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef]

Sonnenforth, D. M.

D. M. Sonnenforth, R. G. Macdonald, and K. Liu, “Fine-structure selectivity in polyatomic reaction products: CN(X2Σ+, v=0, N=0, 1)+O2→NCO (X2Π3/2,0010, J, e/f)+O,” J. Chem. Phys. 93, 1478–1479 (1990).
[CrossRef]

Stranges, D.

M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
[CrossRef]

Sun, M.

M. Sun and J. Yin, “Controllable surface guiding for cold polar molecules with four charged wires,” J. Opt. Soc. Am. B 25, 1214–1222 (2008).
[CrossRef]

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

Tarbutt, M. R.

S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, “Surface-induced heating of cold polar molecules,” Phys. Rev. A 78, 052901 (2008).
[CrossRef]

ter Meulen, J. J.

M. C. van Beek and J. J. ter Meulen, “An intense pulsed electrical discharge source for OH molecular beams,” Chem. Phys. Lett. 337, 237–242 (2001).
[CrossRef]

J. J. ter Meulen, W. L. Meerts, G. W. M. van Mierlo, and A. Dymanus, “Observations of population inversion between the Λ-doublet states of OH,” Phys. Rev. Lett. 36, 1031–1034 (1976).
[CrossRef]

Trippel, S.

R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
[CrossRef]

van Beek, M. C.

M. C. van Beek and J. J. ter Meulen, “An intense pulsed electrical discharge source for OH molecular beams,” Chem. Phys. Lett. 337, 237–242 (2001).
[CrossRef]

van de Meerakker, S. Y. T.

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
[CrossRef]

S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
[CrossRef]

H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
[CrossRef]

van Mierlo, G. W. M.

J. J. ter Meulen, W. L. Meerts, G. W. M. van Mierlo, and A. Dymanus, “Observations of population inversion between the Λ-doublet states of OH,” Phys. Rev. Lett. 36, 1031–1034 (1976).
[CrossRef]

van Roij, A. J. A.

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
[CrossRef]

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

van Veldhoven, J.

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, “Versatile electrostatic trap,” Phys. Rev. A 73, 063408 (2006).
[CrossRef]

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

Vanhaecke, N.

S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
[CrossRef]

Volpi, G. G.

M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
[CrossRef]

Weidemuller, M.

R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
[CrossRef]

Wester, R.

R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
[CrossRef]

Willitsch, S.

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef]

Wohlfart, K.

K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
[CrossRef]

Xia, Y.

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

L. Deng, Y. Xia, and J. Yin, “Electrostatic surface storage ring for cold polar molecules,” J. Opt. Soc. Am. B 27, A88–A92 (2010).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Ye, J.

H. J. Lewandowski, E. R. Hudson, J. R. Bochinski, and J. Ye, “A pulsed, low-temperature beam of supersonically cooled free radical OH molecules,” Chem. Phys. Lett. 395, 53–57 (2004).
[CrossRef]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, and J. Ye, “Cold free-radical molecules in the laboratory frame,” Phys. Rev. A 70, 043410 (2004).
[CrossRef]

Yin, J.

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

L. Deng, Y. Xia, and J. Yin, “Electrostatic surface storage ring for cold polar molecules,” J. Opt. Soc. Am. B 27, A88–A92 (2010).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

M. Sun and J. Yin, “Controllable surface guiding for cold polar molecules with four charged wires,” J. Opt. Soc. Am. B 25, 1214–1222 (2008).
[CrossRef]

Yin, Y.

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

Zieger, P. C.

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

Angew. Chem. Int. Ed. (1)

M. Schnell and G. Meijer, “Cold molecules: preparation, applications, and challenges,” Angew. Chem. Int. Ed. 48, 6010–6031 (2009).
[CrossRef]

Chem. Phys. Lett. (2)

M. C. van Beek and J. J. ter Meulen, “An intense pulsed electrical discharge source for OH molecular beams,” Chem. Phys. Lett. 337, 237–242 (2001).
[CrossRef]

H. J. Lewandowski, E. R. Hudson, J. R. Bochinski, and J. Ye, “A pulsed, low-temperature beam of supersonically cooled free radical OH molecules,” Chem. Phys. Lett. 395, 53–57 (2004).
[CrossRef]

Eur. Phys. J. D (1)

J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G. Meijer, “Decelerated molecular beams for high-resolution spectroscopy,” Eur. Phys. J. D 31, 337–349 (2004).
[CrossRef]

J. Chem. Phys. (4)

D. P. Katz, “A storage ring for polar molecules,” J. Chem. Phys. 107, 8491–8501 (1997).
[CrossRef]

M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G. G. Volpi, “Crossed beam studies of four-atom reactions: the dynamics of OH+D2,” J. Chem. Phys. 98, 2459–2462 (1993).
[CrossRef]

P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, “Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2,” J. Chem. Phys. 95, 5763–5774 (1991).
[CrossRef]

D. M. Sonnenforth, R. G. Macdonald, and K. Liu, “Fine-structure selectivity in polyatomic reaction products: CN(X2Σ+, v=0, N=0, 1)+O2→NCO (X2Π3/2,0010, J, e/f)+O,” J. Chem. Phys. 93, 1478–1479 (1990).
[CrossRef]

J. Opt. Soc. Am. B (2)

Nature (2)

F. M. H. Crompvoets, H. L. Bethlem, R. T. Jongma, and G. Meijer, “A prototype storage ring for neutral molecules,” Nature 411, 174–176 (2001).
[CrossRef]

H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. van Roij, and G. Meijer, “Electrostatic trapping of ammonia molecules,” Nature 406, 491–494 (2000).
[CrossRef]

New J. Phys. (1)

S. A. Meek, H. Conrad, and G. Meijer, “A Stark decelerator on a chip,” New J. Phys. 11, 055024 (2009).
[CrossRef]

Phys. Rev. A (8)

H. L. Bethlem, F. M. H. Crompvoets, R. T. Jongma, S. Y. T. van de Meerakker, and G. Meijer, “Deceleration and trapping of ammonia using time-varying electric fields,” Phys. Rev. A 65, 053416 (2002).
[CrossRef]

S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, “Surface-induced heating of cold polar molecules,” Phys. Rev. A 78, 052901 (2008).
[CrossRef]

J. van Veldhoven, H. L. Bethlem, M. Schnell, and G. Meijer, “Versatile electrostatic trap,” Phys. Rev. A 73, 063408 (2006).
[CrossRef]

F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij, and G. Meijer, “Dynamics of neutral molecules stored in a ring,” Phys. Rev. A 69, 063406 (2004).
[CrossRef]

C. E. Heiner, G. Meijer, and H. L. Bethlem, “Motional resonances in a molecular synchrotron,” Phys. Rev. A 78, 030702 (2008).
[CrossRef]

M. Sun and J. Yin, “Controllable electrostatic guiding for cold polar molecules on the surface of a chip,” Phys. Rev. A 78, 033426 (2008).
[CrossRef]

J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, and J. Ye, “Cold free-radical molecules in the laboratory frame,” Phys. Rev. A 70, 043410 (2004).
[CrossRef]

K. Wohlfart, F. Filsinger, F. Gratz, J. Kupper, and G. Meijer, “Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states,” Phys. Rev. A 78, 033421 (2008).
[CrossRef]

Phys. Rev. Lett. (13)

S. Y. T. van de Meerakker, P. H. M. Smeets, N. Vanhaecke, R. T. Jongma, and G. Meijer, “Deceleration and electrostatic trapping of OH radicals,” Phys. Rev. Lett. 94, 023004 (2005).
[CrossRef]

J. J. ter Meulen, W. L. Meerts, G. W. M. van Mierlo, and A. Dymanus, “Observations of population inversion between the Λ-doublet states of OH,” Phys. Rev. Lett. 36, 1031–1034 (1976).
[CrossRef]

S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, and T. P. Softley, “Cold reactive collisions between laser-cooled ions and velocity-selected neutral molecules,” Phys. Rev. Lett. 100, 043203 (2008).
[CrossRef]

R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, and R. Wester, “Nonstandard behavior of a negative ion reaction at very low temperatures,” Phys. Rev. Lett. 101, 063201 (2008).
[CrossRef]

H. J. Loesch and B. Scheel, “Molecules on Kepler orbits: an experimental study,” Phys. Rev. Lett. 85, 2709–2712 (2000).
[CrossRef]

T. Junglen, T. Rieger, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Two-dimensional trapping of dipolar molecules in time-varying electric fields,” Phys. Rev. Lett. 92, 223001 (2004).
[CrossRef]

P. C. Zieger, S. Y. T. van de Meerakker, C. E. Heiner, H. L. Bethlem, A. J. A. van Roij, and G. Meijer, “Multiple packets of neutral molecules revolving for over a mile,” Phys. Rev. Lett. 105, 173001 (2010).
[CrossRef]

T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, “Continuous loading of an electrostatic trap for polar molecules,” Phys. Rev. Lett. 95, 173002 (2005).
[CrossRef]

Y. Xia, Y. Yin, H. Chen, L. Deng, and J. Yin, “Electrostatic surface guiding for cold polar molecules: experimental demonstration,” Phys. Rev. Lett. 100, 043003 (2008).
[CrossRef]

L. Deng, Y. Liang, Z. Gu, S. Hou, S. Li, Y. Xia, and J. Yin, “Experimental demonstration of a controllable electrostatic molecular beam splitter,” Phys. Rev. Lett. 106, 140401 (2011).
[CrossRef]

S. A. Schulz, H. L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, “Microstructured switchable mirror for polar molecules,” Phys. Rev. Lett. 93, 020406 (2004).
[CrossRef]

S. D. Hogan, P. Allmendinger, H. Saßmannshausen, H. Schmutz, and F. Merkt, “Surface-electrode Rydberg-Stark decelerator,” Phys. Rev. Lett. 108, 063008 (2012).
[CrossRef]

S. A. Meek, H. L. Bethlem, H. Conrad, and G. Meijer, “Trapping molecules on a chip in traveling potential wells,” Phys. Rev. Lett. 100, 153003 (2008).
[CrossRef]

Science (2)

J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G. C. Groenenboom, and G. Meijer, “Near-threshold inelastic collisions using molecular beams with a tunable velocity,” Science 313, 1617–1620 (2006).
[CrossRef]

S. A. Meek, H. Conrad, and G. Meijer, “Trapping molecules on a chip,” Science 324, 1699–1702 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a) Schematic diagram of the electric surface storage ring using two charged rings and a grounded conductor plate. The voltage applied on the ring 1 and ring 2 is U1 and U2, respectively. Ring 2 is sandwiched between two Teflon substrates with thickness of a (substrate 1) and b (substrate 2), respectively. (b) Cross section of the storage ring with electric field contours. The parameters are as follows: a=3mm, b=4.5mm, r0=0.5mm, R=100mm, U1=8kV, U2=30kV.

Fig. 2.
Fig. 2.

Dependence of the trapping center position Z0 (a) on the thickness of substrate 1, (b) on the thickness of substrate 2, (c) on the voltage applied on ring 2 (U2), (d) and on the voltage applied on ring 1 (U1). The used parameters are shown in the corresponding panel for each case. The points are the calculated results, and the red lines are the fitting curve.

Fig. 3.
Fig. 3.

Stark energy structure pattern of OH molecules in external electric field for rotational quantum state of J=3/2.

Fig. 4.
Fig. 4.

(a) Dependence of the trapping potentials for OH molecules on the voltage applied on the ring 1. The parameters are R=100mm, U2=30kV, a=3mm, b=4.5mm, r0=0.5mm. The points are the calculated results, and the red line is the fitting curve. (b) Dependence of the trapping potentials for OH molecules on the voltage applied on the ring 2. The parameters are R=100mm, U1=8kV, a=3mm, b=4.5mm, r0=0.5mm. The points are the calculated results, and the red line is the fitting curve.

Fig. 5.
Fig. 5.

Potential energy W as a function of the displacement (ΔR) from the electrostatic guiding center in the plane of the storage ring for OH molecules with a tangential velocity of (a) 0m/s, (b) 25m/s, (c) 50m/s, (d) 75m/s, (e) 90m/s, and (g) 110m/s. The solid red curves show the total potential energy and the dashed lines correspond to the pseudo-potential energy resulted from the centrifugal force experienced by OH molecules.

Fig. 6.
Fig. 6.

(a) Number density of OH molecules at the detection zone as a function of storage time (simulation results). The system parameters used are as follows: R=100mm, U1=8kV, U2=30kV, r0=0.5mm, a=3mm, b=4.5mm. The initial velocity distributions of molecules are Vy=40m/s, Vx=Vz=0m/s, ΔVx=ΔVz=2m/s. From left to right the corresponding value of ΔVy is 2m/s, 6m/s, and 10m/s, respectively. (b) Number density of OH molecules at the detection zone as a function of storage time (simulation results). The system parameters used are as follows: R=100mm, U1=8kV, U2=30kV, r0=0.5mm, a=3mm, b=4.5mm; the initial velocity distributions of molecules are Vx=Vz=0m/s, ΔVx=ΔVz=2m/s, ΔVy=6m/s. From left to right the corresponding value of Vy are 20m/s, 40m/s, and 60m/s, respectively.

Fig. 7.
Fig. 7.

Velocity transformation between coordinate systems for orbiting molecule in the storage ring. Here Vx and Vy are the velocity components in directions X and Y of the space fixed coordinates, VL and Vρ are velocity components in tangential and radial directions of the traveling coordinates, respectively.

Fig. 8.
Fig. 8.

(a) Tρ, (b) TZ, and (c) TL as a function of n (discernible round trips of molecular packet) for different velocities of the incident molecular beam; (d) TL as a function of n for different values of R; (e) Tρ and (f) TZ as a function of n for different values of U1 (the voltage applied on the ring 1). The points are the simulated results, and the colored lines are the fitting curves. The used parameters are shown in each panel correspondingly.

Fig. 9.
Fig. 9.

Relative number of molecules remained in the storage ring as a function of the round trips they make. Here U1=8kV, U2=30kV, VL=80m/s, ΔVx=ΔVy=ΔVz=10m/s, and R=100mm. (a) The points are the calculated results, and the colored lines are the fitting curves. (b) Dependence of the normalized trapping efficiency (η) on the longitudinal velocity of the molecular beam (VL), (c) on ΔVρ (ΔVZ), and (d) on the voltage applied on the ring 1 (U1). Points are the calculated results, and the red line is the fitting curve. The used parameters are shown in each panel.

Fig. 10.
Fig. 10.

(a) Schematic diagram of electric surface storage ring with bunching effect. The upper storage ring is composed of two half rings and a series of straight poles. The radius of curvature of each half ring is 100 mm, the length of each straight pole is 3 mm. The lower ring is analogous to a racetrack. Other parameters are the same as Fig. 1. (b) Close view of the ring electrode structure together with the distribution of the electric field. The voltage HV1 applied on the lower ring is 30kV. The red solid line corresponds to the case when the values of HV2 and HV3 are set as 6kV and 0 V, respectively. The black dash one indicates the situation when HV2 and HV3 are 0 V and 6kV, respectively.

Fig. 11.
Fig. 11.

(a) Velocity distribution of the molecular packet before and after bunching. The full width at half-maximum (FWHM) spread of the initial velocity distribution is 10m/s. After bunching, the FWHM spread is about 2.4m/s. (b) Number density of OH molecules in the storage ring as a function of time with guide mode (upper panel, HV2=HV3=6kV, and HV1=30kV) and bunch mode (lower panel, HV1=30kV, HV2 and HV3 alternate between values of 6kV and 0 kV).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Wcentrif=F⃗centrifdΔR⃗=mvL2Log(1+ΔR/R),
n2πRVcenter÷(2πRVslow2πRVfast)=Vslow×VfastVcenter×(VfastVslow)VLΔV.
Vρ=Vxcosθ+Vysinθ,
VL=VycosθVxsinθ,
cosθ=x/R,sinθ=y/R.

Metrics