Abstract

New synthesis techniques for highly concentrated colloidal C60 suspensions were developed. The nonlinear absorption and nonlinear scattering behavior of colloidal C60 suspensions and benchmark materials (carbon black suspension and C60 solution) were studied with an apparatus that simultaneously measured the total scattered and transmitted energy, inferring absorbance. These experimental results were compared to simple thermodynamic and reverse saturable absorption models, as well as a hybridized model proposed for the nonlinear optical behavior of C60 colloids. All samples followed an attenuation pattern in the nonlinear scattering regime that was fit by a single extinction coefficient, indicating that the energy in excess of that required to reach the sublimation threshold does not significantly affect the size of the induced scattering centers. C60 colloids evidenced strong quenching of the first excited singlet band, leading to weak intersystem-crossing to the triplet manifold. The degree of quenching was morphology dependent. Tighter crystalline packing led to stronger quenching. Samples with higher triplet quantum yield evidenced less efficient heating of the particles. Consequently, for otherwise similar C60 colloids, stronger nonlinear absorption response was found to diminish the nonlinear scattering response. Large, crystalline C60 colloids had a stronger nonlinear optical response than benchmarks.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription