Abstract

New synthesis techniques for highly concentrated colloidal C60 suspensions were developed. The nonlinear absorption and nonlinear scattering behavior of colloidal C60 suspensions and benchmark materials (carbon black suspension and C60 solution) were studied with an apparatus that simultaneously measured the total scattered and transmitted energy, inferring absorbance. These experimental results were compared to simple thermodynamic and reverse saturable absorption models, as well as a hybridized model proposed for the nonlinear optical behavior of C60 colloids. All samples followed an attenuation pattern in the nonlinear scattering regime that was fit by a single extinction coefficient, indicating that the energy in excess of that required to reach the sublimation threshold does not significantly affect the size of the induced scattering centers. C60 colloids evidenced strong quenching of the first excited singlet band, leading to weak intersystem-crossing to the triplet manifold. The degree of quenching was morphology dependent. Tighter crystalline packing led to stronger quenching. Samples with higher triplet quantum yield evidenced less efficient heating of the particles. Consequently, for otherwise similar C60 colloids, stronger nonlinear absorption response was found to diminish the nonlinear scattering response. Large, crystalline C60 colloids had a stronger nonlinear optical response than benchmarks.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, “Model of suspension limiters,” Proc. SPIE 3146, 62–71 (1997).
    [CrossRef]
  2. R. Goedert, R. Becker, A. Clements, and T. Whittaker, “Time-resolved shadowgraphic imaging of the response of dilute suspensions to laser pulses,” J. Opt. Soc. Am. B 15, 1442–1462 (1998).
    [CrossRef]
  3. K. Mansour, M. J. Soileau, and E. W. Vanstryland, “Nonlinear optical properties of carbon-black suspensions (ink),” J. Opt. Soc. Am. B 9, 1100–1109 (1992).
    [CrossRef]
  4. F. Fougeanet and D. Riehl, “Investigation of optical limiting mechanisms in carbon-black suspensions,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 435–446 (1999).
  5. D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 391–398 (1999).
  6. K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspension,” Proc. SPIE 3472, 42–52 (1998).
  7. L. W. Tutt and A. Kost, “Optical limiting performance in C60 and C70 solutions,” Nature 356, 225–226 (1992).
    [CrossRef]
  8. A. Kost, L. W. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias, “Optical limiting with C60 in polymethyl methacrylate,” Opt. Lett. 18, 334–336 (1993).
    [CrossRef]
  9. S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “The role of nonlinear scattering in optical limiting in C60 solutions,” J. Phys. B 27, L157–L163 (1994).
    [CrossRef]
  10. S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “On the contribution of nonlinear scattering to optical limiting in C60 solution,” Appl. Phys. A 63, 223–226 (1996).
    [CrossRef]
  11. K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
    [CrossRef]
  12. S. Deguchi, R. G. Alargova, and K. Tsujii, “Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization,” Langmuir 17, 6013–6017 (2001).
    [CrossRef]
  13. A. Beeby, J. Eastoe, and R. K. Heenan, “Solubilization of C60 in aqueous micellar solution,” J. Chem. Soc. D Chem. Commun. 1994, 173–175 (1994).
    [CrossRef]
  14. J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, “Structure and photophysics in C60 micellar solutions,” Chem. Phys. Lett. 245, 571–577 (1995).
    [CrossRef]
  15. M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
    [CrossRef]
  16. E. R. Crooks, J. Eastoe, and A. Beeby, “Photoexcited fullerene species in Triton-X100 micelles,” J. Chem. Soc., Faraday Trans. 93, 4131–4136 (1997).
    [CrossRef]
  17. A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
    [CrossRef]
  18. SES Research, “Properties of carbon 60,” http://www.sesres.com/PhysicalProperties.asp .
  19. J. D. Lindberg, R. E. Douglass, and D. M. Garvey, “Imaginary refractive index of buckyballs,” Appl. Opt. 32, 3921–3922 (1993).
    [CrossRef]
  20. B. B. Weiner, W. W. Tscharnuter, and W. Bernt, “Characterizing ASTM carbon black reference materials using a disc centrifuge photosedimentometer,” J. Dispersion Sci. Technol. 23, 671–678 (2002).
    [CrossRef]
  21. A. I. Medalia and L. W. Richards, “Tinting strength of carbon black,” J. Colloid Interface Sci. 40, 233–252 (1972).
    [CrossRef]
  22. T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, “Excited-state properties of C60,” Chem. Phys. Lett. 181, 501–504 (1991).
    [CrossRef]
  23. R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
    [CrossRef]
  24. J. Williams, “Oceanographic instrumentation,” in Oceanographic Instrumentation (Naval Institute, 1973), pp. 87–88.
  25. LabSphere, “Integrating sphere theory and applications,” www.labsphere.com/technical/technical-guides.aspx .
  26. Google, “scatterlib,” http://code.google.com/p/scatterlib/wiki/Spheres .
  27. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KGaA, 2004).
  28. A. Kobyakov, D. J. Hagan, and E. W. Van Stryland, “Analytical approach to dynamics of reverse saturable absorbers,” J. Opt. Soc. Am. B 17, 1884–1893 (2000).
    [CrossRef]
  29. D. J. Segelstein, “The complex refractive index of water,” in Physics (University of Missouri, 1981), p. 167.
  30. M. Daimon and A. Masumura, “Measurement of the refractive index of distilled water from the near-infrared region to the ultraviolet region,” Appl. Opt. 46, 3811–3820 (2007).
    [CrossRef]
  31. S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Kilmov, A. Kanavin, and A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt. 48, C38–C45 (2009).
    [CrossRef]
  32. NIST, “Toluene,” http://webbook.nist.gov/cgi/cbook.cgi?ID=C108883&Mask=4 .

2009 (2)

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

S. Egerev, S. Ermilov, O. Ovchinnikov, A. Fokin, D. Guzatov, V. Kilmov, A. Kanavin, and A. Oraevsky, “Acoustic signals generated by laser-irradiated metal nanoparticles,” Appl. Opt. 48, C38–C45 (2009).
[CrossRef]

2007 (1)

2002 (1)

B. B. Weiner, W. W. Tscharnuter, and W. Bernt, “Characterizing ASTM carbon black reference materials using a disc centrifuge photosedimentometer,” J. Dispersion Sci. Technol. 23, 671–678 (2002).
[CrossRef]

2001 (1)

S. Deguchi, R. G. Alargova, and K. Tsujii, “Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization,” Langmuir 17, 6013–6017 (2001).
[CrossRef]

2000 (1)

1999 (2)

F. Fougeanet and D. Riehl, “Investigation of optical limiting mechanisms in carbon-black suspensions,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 435–446 (1999).

D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 391–398 (1999).

1998 (2)

1997 (3)

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, “Model of suspension limiters,” Proc. SPIE 3146, 62–71 (1997).
[CrossRef]

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

E. R. Crooks, J. Eastoe, and A. Beeby, “Photoexcited fullerene species in Triton-X100 micelles,” J. Chem. Soc., Faraday Trans. 93, 4131–4136 (1997).
[CrossRef]

1996 (1)

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “On the contribution of nonlinear scattering to optical limiting in C60 solution,” Appl. Phys. A 63, 223–226 (1996).
[CrossRef]

1995 (2)

J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, “Structure and photophysics in C60 micellar solutions,” Chem. Phys. Lett. 245, 571–577 (1995).
[CrossRef]

K. M. Nashold and D. P. Walter, “Investigations of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Soc. Am. B 12, 1228–1237 (1995).
[CrossRef]

1994 (3)

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
[CrossRef]

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “The role of nonlinear scattering in optical limiting in C60 solutions,” J. Phys. B 27, L157–L163 (1994).
[CrossRef]

A. Beeby, J. Eastoe, and R. K. Heenan, “Solubilization of C60 in aqueous micellar solution,” J. Chem. Soc. D Chem. Commun. 1994, 173–175 (1994).
[CrossRef]

1993 (2)

1992 (2)

1991 (1)

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, “Excited-state properties of C60,” Chem. Phys. Lett. 181, 501–504 (1991).
[CrossRef]

1972 (1)

A. I. Medalia and L. W. Richards, “Tinting strength of carbon black,” J. Colloid Interface Sci. 40, 233–252 (1972).
[CrossRef]

Alargova, R. G.

S. Deguchi, R. G. Alargova, and K. Tsujii, “Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization,” Langmuir 17, 6013–6017 (2001).
[CrossRef]

Becker, R.

Becker, R. J.

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, “Model of suspension limiters,” Proc. SPIE 3146, 62–71 (1997).
[CrossRef]

Beeby, A.

E. R. Crooks, J. Eastoe, and A. Beeby, “Photoexcited fullerene species in Triton-X100 micelles,” J. Chem. Soc., Faraday Trans. 93, 4131–4136 (1997).
[CrossRef]

J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, “Structure and photophysics in C60 micellar solutions,” Chem. Phys. Lett. 245, 571–577 (1995).
[CrossRef]

A. Beeby, J. Eastoe, and R. K. Heenan, “Solubilization of C60 in aqueous micellar solution,” J. Chem. Soc. D Chem. Commun. 1994, 173–175 (1994).
[CrossRef]

Bensasson, R. V.

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
[CrossRef]

Bernt, W.

B. B. Weiner, W. W. Tscharnuter, and W. Bernt, “Characterizing ASTM carbon black reference materials using a disc centrifuge photosedimentometer,” J. Dispersion Sci. Technol. 23, 671–678 (2002).
[CrossRef]

Bertone, J. F.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Bienvenue, E.

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KGaA, 2004).

Clements, A.

Clements, A. F.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, “Model of suspension limiters,” Proc. SPIE 3146, 62–71 (1997).
[CrossRef]

Crooks, E. R.

E. R. Crooks, J. Eastoe, and A. Beeby, “Photoexcited fullerene species in Triton-X100 micelles,” J. Chem. Soc., Faraday Trans. 93, 4131–4136 (1997).
[CrossRef]

J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, “Structure and photophysics in C60 micellar solutions,” Chem. Phys. Lett. 245, 571–577 (1995).
[CrossRef]

Daimon, M.

Deguchi, S.

S. Deguchi, R. G. Alargova, and K. Tsujii, “Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization,” Langmuir 17, 6013–6017 (2001).
[CrossRef]

Dellinger, M.

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
[CrossRef]

Dougherty, T. K.

Douglass, R. E.

Eastoe, J.

E. R. Crooks, J. Eastoe, and A. Beeby, “Photoexcited fullerene species in Triton-X100 micelles,” J. Chem. Soc., Faraday Trans. 93, 4131–4136 (1997).
[CrossRef]

J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, “Structure and photophysics in C60 micellar solutions,” Chem. Phys. Lett. 245, 571–577 (1995).
[CrossRef]

A. Beeby, J. Eastoe, and R. K. Heenan, “Solubilization of C60 in aqueous micellar solution,” J. Chem. Soc. D Chem. Commun. 1994, 173–175 (1994).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, “Excited-state properties of C60,” Chem. Phys. Lett. 181, 501–504 (1991).
[CrossRef]

Egerev, S.

Elias, W. E.

Ermilov, S.

Fokin, A.

Fougeanet, F.

D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 391–398 (1999).

F. Fougeanet and D. Riehl, “Investigation of optical limiting mechanisms in carbon-black suspensions,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 435–446 (1999).

Fujitsuka, M.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Gao, D.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Garvey, D. M.

Goedert, R.

Goedert, R. V.

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, “Model of suspension limiters,” Proc. SPIE 3146, 62–71 (1997).
[CrossRef]

Guzatov, D.

Hagan, D. J.

Haley, J. E.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Heenan, R. K.

J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, “Structure and photophysics in C60 micellar solutions,” Chem. Phys. Lett. 245, 571–577 (1995).
[CrossRef]

A. Beeby, J. Eastoe, and R. K. Heenan, “Solubilization of C60 in aqueous micellar solution,” J. Chem. Soc. D Chem. Commun. 1994, 173–175 (1994).
[CrossRef]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KGaA, 2004).

Ito, O.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

James, D. B.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspension,” Proc. SPIE 3472, 42–52 (1998).

Joshi, M. P.

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “On the contribution of nonlinear scattering to optical limiting in C60 solution,” Appl. Phys. A 63, 223–226 (1996).
[CrossRef]

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “The role of nonlinear scattering in optical limiting in C60 solutions,” J. Phys. B 27, L157–L163 (1994).
[CrossRef]

Kanavin, A.

Kasai, H.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Kilmov, V.

Klein, M. B.

Kobyakov, A.

Kost, A.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

A. Kost, L. W. Tutt, M. B. Klein, T. K. Dougherty, and W. E. Elias, “Optical limiting with C60 in polymethyl methacrylate,” Opt. Lett. 18, 334–336 (1993).
[CrossRef]

L. W. Tutt and A. Kost, “Optical limiting performance in C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Kuroshima, S.

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, “Excited-state properties of C60,” Chem. Phys. Lett. 181, 501–504 (1991).
[CrossRef]

Leach, S.

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
[CrossRef]

Lindberg, J. D.

Mackie, D. M.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Mansour, K.

Masuhara, A.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Masumura, A.

McEwan, K. J.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspension,” Proc. SPIE 3472, 42–52 (1998).

Medalia, A. I.

A. I. Medalia and L. W. Richards, “Tinting strength of carbon black,” J. Colloid Interface Sci. 40, 233–252 (1972).
[CrossRef]

Mehendale, S. C.

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “On the contribution of nonlinear scattering to optical limiting in C60 solution,” Appl. Phys. A 63, 223–226 (1996).
[CrossRef]

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “The role of nonlinear scattering in optical limiting in C60 solutions,” J. Phys. B 27, L157–L163 (1994).
[CrossRef]

Milsom, P. K.

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspension,” Proc. SPIE 3472, 42–52 (1998).

Mishra, S. R.

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “On the contribution of nonlinear scattering to optical limiting in C60 solution,” Appl. Phys. A 63, 223–226 (1996).
[CrossRef]

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “The role of nonlinear scattering in optical limiting in C60 solutions,” J. Phys. B 27, L157–L163 (1994).
[CrossRef]

Mott, A. G.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Nakanishi, H.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Nashold, K. M.

Oikawa, H.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Okada, S.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Oraevsky, A.

Ovchinnikov, O.

Rauh, R. D.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Rawat, H. S.

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “On the contribution of nonlinear scattering to optical limiting in C60 solution,” Appl. Phys. A 63, 223–226 (1996).
[CrossRef]

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “The role of nonlinear scattering in optical limiting in C60 solutions,” J. Phys. B 27, L157–L163 (1994).
[CrossRef]

Richards, L. W.

A. I. Medalia and L. W. Richards, “Tinting strength of carbon black,” J. Colloid Interface Sci. 40, 233–252 (1972).
[CrossRef]

Riehl, D.

F. Fougeanet and D. Riehl, “Investigation of optical limiting mechanisms in carbon-black suspensions,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 435–446 (1999).

D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 391–398 (1999).

Segelstein, D. J.

D. J. Segelstein, “The complex refractive index of water,” in Physics (University of Missouri, 1981), p. 167.

Seta, P.

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
[CrossRef]

Soileau, M. J.

Stefanik, T. S.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Tanigaki, K.

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, “Excited-state properties of C60,” Chem. Phys. Lett. 181, 501–504 (1991).
[CrossRef]

Tscharnuter, W. W.

B. B. Weiner, W. W. Tscharnuter, and W. Bernt, “Characterizing ASTM carbon black reference materials using a disc centrifuge photosedimentometer,” J. Dispersion Sci. Technol. 23, 671–678 (2002).
[CrossRef]

Tsujii, K.

S. Deguchi, R. G. Alargova, and K. Tsujii, “Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization,” Langmuir 17, 6013–6017 (2001).
[CrossRef]

Tutt, L. W.

Urbas, A. M.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Van Stryland, E. W.

Vanstryland, E. W.

Walter, D. P.

Wang, F.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Watanabe, A.

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Weiner, B. B.

B. B. Weiner, W. W. Tscharnuter, and W. Bernt, “Characterizing ASTM carbon black reference materials using a disc centrifuge photosedimentometer,” J. Dispersion Sci. Technol. 23, 671–678 (2002).
[CrossRef]

Whittaker, T.

Whittaker, T. A.

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, “Model of suspension limiters,” Proc. SPIE 3146, 62–71 (1997).
[CrossRef]

Wiers, B. M.

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Williams, J.

J. Williams, “Oceanographic instrumentation,” in Oceanographic Instrumentation (Naval Institute, 1973), pp. 87–88.

Appl. Opt. (3)

Appl. Phys. A (1)

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “On the contribution of nonlinear scattering to optical limiting in C60 solution,” Appl. Phys. A 63, 223–226 (1996).
[CrossRef]

Chem. Lett. (1)

M. Fujitsuka, H. Kasai, A. Masuhara, S. Okada, H. Oikawa, H. Nakanishi, A. Watanabe, and O. Ito, “Laser flash photolysis study on photochemical and photophysical properties of C60 fine particle,” Chem. Lett. 26, 1211–1212 (1997).
[CrossRef]

Chem. Phys. Lett. (2)

J. Eastoe, E. R. Crooks, A. Beeby, and R. K. Heenan, “Structure and photophysics in C60 micellar solutions,” Chem. Phys. Lett. 245, 571–577 (1995).
[CrossRef]

T. W. Ebbesen, K. Tanigaki, and S. Kuroshima, “Excited-state properties of C60,” Chem. Phys. Lett. 181, 501–504 (1991).
[CrossRef]

J. Chem. Soc. D Chem. Commun. (1)

A. Beeby, J. Eastoe, and R. K. Heenan, “Solubilization of C60 in aqueous micellar solution,” J. Chem. Soc. D Chem. Commun. 1994, 173–175 (1994).
[CrossRef]

J. Chem. Soc., Faraday Trans. (1)

E. R. Crooks, J. Eastoe, and A. Beeby, “Photoexcited fullerene species in Triton-X100 micelles,” J. Chem. Soc., Faraday Trans. 93, 4131–4136 (1997).
[CrossRef]

J. Colloid Interface Sci. (1)

A. I. Medalia and L. W. Richards, “Tinting strength of carbon black,” J. Colloid Interface Sci. 40, 233–252 (1972).
[CrossRef]

J. Dispersion Sci. Technol. (1)

B. B. Weiner, W. W. Tscharnuter, and W. Bernt, “Characterizing ASTM carbon black reference materials using a disc centrifuge photosedimentometer,” J. Dispersion Sci. Technol. 23, 671–678 (2002).
[CrossRef]

J. Opt. Soc. Am. B (4)

J. Phys. B (1)

S. R. Mishra, H. S. Rawat, M. P. Joshi, and S. C. Mehendale, “The role of nonlinear scattering in optical limiting in C60 solutions,” J. Phys. B 27, L157–L163 (1994).
[CrossRef]

J. Phys. Chem. (1)

R. V. Bensasson, E. Bienvenue, M. Dellinger, S. Leach, and P. Seta, “C60 in model biological systems. A visible-UV absorption study of solvent-dependent parameters and solute aggregation,” J. Phys. Chem. 98, 3492–3500 (1994).
[CrossRef]

J. Phys. Chem. A (1)

A. F. Clements, J. E. Haley, A. M. Urbas, A. Kost, R. D. Rauh, J. F. Bertone, F. Wang, B. M. Wiers, D. Gao, T. S. Stefanik, A. G. Mott, and D. M. Mackie, “Photophysical properties of C60 colloids suspended in water with Triton X-100 surfactant: excited-state properties with femtosecond resolution,” J. Phys. Chem. A 113, 6437–6445 (2009).
[CrossRef]

Langmuir (1)

S. Deguchi, R. G. Alargova, and K. Tsujii, “Stable dispersions of fullerenes, C60 and C70, in water. Preparation and characterization,” Langmuir 17, 6013–6017 (2001).
[CrossRef]

Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B (2)

F. Fougeanet and D. Riehl, “Investigation of optical limiting mechanisms in carbon-black suspensions,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 435–446 (1999).

D. Riehl and F. Fougeanet, “Thermodynamic modeling of optical limiting mechanisms in carbon-black suspensions (CBS),” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. B 21, 391–398 (1999).

Nature (1)

L. W. Tutt and A. Kost, “Optical limiting performance in C60 and C70 solutions,” Nature 356, 225–226 (1992).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

R. J. Becker, R. V. Goedert, A. F. Clements, and T. A. Whittaker, “Model of suspension limiters,” Proc. SPIE 3146, 62–71 (1997).
[CrossRef]

K. J. McEwan, P. K. Milsom, and D. B. James, “Nonlinear optical effects in carbon suspension,” Proc. SPIE 3472, 42–52 (1998).

Other (7)

SES Research, “Properties of carbon 60,” http://www.sesres.com/PhysicalProperties.asp .

J. Williams, “Oceanographic instrumentation,” in Oceanographic Instrumentation (Naval Institute, 1973), pp. 87–88.

LabSphere, “Integrating sphere theory and applications,” www.labsphere.com/technical/technical-guides.aspx .

Google, “scatterlib,” http://code.google.com/p/scatterlib/wiki/Spheres .

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH & Co. KGaA, 2004).

D. J. Segelstein, “The complex refractive index of water,” in Physics (University of Missouri, 1981), p. 167.

NIST, “Toluene,” http://webbook.nist.gov/cgi/cbook.cgi?ID=C108883&Mask=4 .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

TEM images of C601 suspension. (a) Polydisperse particles up to 50 nm in diameter and (b) many spherical particles about 5 nm in diameter.

Fig. 2.
Fig. 2.

High-resolution TEM images of particles in C601 suspension. (a) Faceted edges, (b) lattice fringes, and inset to (b) Fourier transform of a high-resolution TEM image showing FCC or hexagonal symmetry.

Fig. 3.
Fig. 3.

TEM images of C602 suspension. (a) A representative large (>50nm) particle and (b) a representative group of many small 5 nm particles.

Fig. 4.
Fig. 4.

TEM images of C603 suspension. (a) and (b) Two magnifications of the same cluster, showing primary particle diameters near 10 nm and smooth features (little evidence of crystallinity).

Fig. 5.
Fig. 5.

Ground state absorbance spectra of samples.

Fig. 6.
Fig. 6.

Total scattering apparatus.

Fig. 7.
Fig. 7.

Percentage of energy transmitted, scattered, and absorbed by CBS-1 suspension.

Fig. 8.
Fig. 8.

Percentage of energy transmitted, scattered, and absorbed by C60 in Toluene solution.

Fig. 9.
Fig. 9.

Percentage of energy transmitted, scattered, and absorbed by C601 suspension.

Fig. 10.
Fig. 10.

Percentage of energy transmitted, scattered, and absorbed by C602 suspension.

Fig. 11.
Fig. 11.

Percentage of energy transmitted, scattered, and absorbed by C603 suspension.

Fig. 12.
Fig. 12.

Percent transmittance of all samples.

Fig. 13.
Fig. 13.

Five-level model of RSA.

Tables (1)

Tables Icon

Table 1. Particle Size Distribution Statistics from DLS Measurements

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

W(t)=3σabsI(t)4πR2,
T(t)=T0+0t(Wmax)HW(t)ρCp,
Iout=Iineαdz,
dN0dt=σgI(t)ωN0+N1τ10,
dN1dt=σgI(t)ωN0N1τ1,
dN3dt=N1τ13,
1τ1=1τ10+1τ13.
dn0dT=f(T)n0+w(1ϕ)n1,
dn1dT=f(T)n0wn1,
dn3dT=wϕn1,
n0(T)+n1(T)+n3(T)=1.
n0(T)exp[ϕA(tanhT+1)],
n1(T)Awsech2Texp[ϕA(tanhT+1)].
σeff=n0+σ¯Sn1+σ¯Tn3,
Iout=Iinexp[σeffdZ],
αB=ln(TB)/L,

Metrics