Abstract

For the first time, we present the comparison of Autler–Townes (AT) splitting in fluorescence and six-wave mixing (SWM) signals with electromagnetically induced transparency (EIT). With the detunings of the generating or external-dressing fields scanned, the two signals are distinguished theoretically and investigated experimentally. The EIT separation and AT splitting in fluorescence and SWM can be controlled by a phase determined by the angle in between the incident beams. These phenomena also can be modulated by the incident beam powers. In particular, the anti-AT splitting representing the vanishing tendency of secondary AT splitting is observed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
    [CrossRef]
  2. J. P. Marangos and T. Halfmann, in Handbook of Optics, M. Bass, ed., 3rd ed. (McGraw-Hill, 2009), vol. 4, Chap. 14, pp. 1–44.
  3. Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
    [CrossRef]
  4. Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
    [CrossRef]
  5. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
    [CrossRef]
  6. Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064–1066 (1996).
    [CrossRef]
  7. M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
    [CrossRef]
  8. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
    [CrossRef]
  9. B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
    [CrossRef]
  10. W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49, 4895–4901 (1994).
    [CrossRef]
  11. Y. P. Zhang, P. Y. Li, H. B. Zheng, Z. G. Wang, H. X. Chen, C. B. Li, R. Y. Zhang, and M. Xiao, “Observation of Autler–Townes splitting in six-wave mixing,” Opt. Express 19, 7769–7777 (2011).
    [CrossRef]
  12. J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
    [CrossRef]
  13. J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73, 043810 (2006).
    [CrossRef]
  14. Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3422 (2010).
    [CrossRef]
  15. J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
    [CrossRef]
  16. P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
    [CrossRef]

2012

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

2011

2010

2007

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef]

2006

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73, 043810 (2006).
[CrossRef]

2005

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

2002

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

1999

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

1996

1995

P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982–984 (1995).
[CrossRef]

B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
[CrossRef]

1994

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49, 4895–4901 (1994).
[CrossRef]

1955

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Agostini, P.

B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
[CrossRef]

Autler, S. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Brown, A. W.

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef]

Chalupczak, W.

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49, 4895–4901 (1994).
[CrossRef]

Chen, H. X.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Y. P. Zhang, P. Y. Li, H. B. Zheng, Z. G. Wang, H. X. Chen, C. B. Li, R. Y. Zhang, and M. Xiao, “Observation of Autler–Townes splitting in six-wave mixing,” Opt. Express 19, 7769–7777 (2011).
[CrossRef]

Cronin-Golomb, M.

Dimauro, L. F.

B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
[CrossRef]

Donoghue, J.

Field, R. W.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

Fleischhauer, M.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Fu, G. S.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Fu, P. M.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Gawlik, W.

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49, 4895–4901 (1994).
[CrossRef]

Halfmann, T.

J. P. Marangos and T. Halfmann, in Handbook of Optics, M. Bass, ed., 3rd ed. (McGraw-Hill, 2009), vol. 4, Chap. 14, pp. 1–44.

Hemmer, P. R.

Imamoglu, A.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Jiang, Q.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Kaluza, M.

B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
[CrossRef]

Katz, D. P.

Kirova, T.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

Kumar, P.

Lan, H. Y.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Lazarov, G.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Lazoudis, A.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

Li, C. B.

Li, L.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Li, P. Y.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Y. P. Zhang, P. Y. Li, H. B. Zheng, Z. G. Wang, H. X. Chen, C. B. Li, R. Y. Zhang, and M. Xiao, “Observation of Autler–Townes splitting in six-wave mixing,” Opt. Express 19, 7769–7777 (2011).
[CrossRef]

Li, Y.

Liu, X.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Lukin, M. D.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Lyyra, A. M.

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73, 043810 (2006).
[CrossRef]

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Magnes, J.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

Marangos, J.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Marangos, J. P.

J. P. Marangos and T. Halfmann, in Handbook of Optics, M. Bass, ed., 3rd ed. (McGraw-Hill, 2009), vol. 4, Chap. 14, pp. 1–44.

Narducci, L. M.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Nie, Z. Q.

Qi, J.

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73, 043810 (2006).
[CrossRef]

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

Qi, J. B.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Scully, M. O.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Shahriar, M. S.

Sheehy, B.

B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
[CrossRef]

Spano, F. C.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Sun, J.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Townes, C. H.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Walker, B.

B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
[CrossRef]

Wang, X. J.

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

Wang, Z. G.

Wen, F.

Wu, L. A.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Xiao, M.

Yelin, S. F.

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

Zachorowski, J.

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49, 4895–4901 (1994).
[CrossRef]

Zhang, R. Y.

Zhang, Y. P.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Y. P. Zhang, P. Y. Li, H. B. Zheng, Z. G. Wang, H. X. Chen, C. B. Li, R. Y. Zhang, and M. Xiao, “Observation of Autler–Townes splitting in six-wave mixing,” Opt. Express 19, 7769–7777 (2011).
[CrossRef]

Y. P. Zhang, Z. Q. Nie, Z. G. Wang, C. B. Li, F. Wen, and M. Xiao, “Evidence of Autler–Townes splitting in high-order nonlinear processes,” Opt. Lett. 35, 3420–3422 (2010).
[CrossRef]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef]

Zhang, Y. Q.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Zhao, Z. Y.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Zheng, H. B.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Y. P. Zhang, P. Y. Li, H. B. Zheng, Z. G. Wang, H. X. Chen, C. B. Li, R. Y. Zhang, and M. Xiao, “Observation of Autler–Townes splitting in six-wave mixing,” Opt. Express 19, 7769–7777 (2011).
[CrossRef]

Zuo, Z. C.

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Appl. Phys. Lett.

P. Y. Li, Z. Y. Zhao, Z. G. Wang, Y. Q. Zhang, H. Y. Lan, H. X. Chen, H. B. Zheng, and Y. P. Zhang, “Phase control of bright and dark states in four-wave mixing and fluorescence channels,” Appl. Phys. Lett. 101, 081107 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev.

S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955).
[CrossRef]

Phys. Rev. A

M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, “Quantum interference effects induced by interacting dark resonances,” Phys. Rev. A 60, 3225–3228 (1999).
[CrossRef]

W. Chalupczak, W. Gawlik, and J. Zachorowski, “Four-wave mixing in strongly driven two-level systems,” Phys. Rev. A 49, 4895–4901 (1994).
[CrossRef]

J. Qi and A. M. Lyyra, “Electromagnetically induced transparency and dark fluorescence in a cascade three-level diatomic lithium system,” Phys. Rev. A 73, 043810 (2006).
[CrossRef]

Phys. Rev. Lett.

J. Qi, F. C. Spano, T. Kirova, A. Lazoudis, J. Magnes, L. Li, L. M. Narducci, R. W. Field, and A. M. Lyyra, “Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency,” Phys. Rev. Lett. 88, 173003 (2002).
[CrossRef]

J. B. Qi, G. Lazarov, X. J. Wang, L. Li, L. M. Narducci, A. M. Lyyra, and F. C. Spano, “Autler–Townes splitting in molecular lithium: prospects for all-optical alignment of nonpolar molecules,” Phys. Rev. Lett. 83, 288–291 (1999).
[CrossRef]

B. Walker, M. Kaluza, B. Sheehy, P. Agostini, and L. F. Dimauro, “Observation of continuum-continuum Autler–Townes splitting,” Phys. Rev. Lett. 75, 633–636 (1995).
[CrossRef]

Y. P. Zhang, A. W. Brown, and M. Xiao, “Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows,” Phys. Rev. Lett. 99, 123603 (2007).
[CrossRef]

Z. C. Zuo, J. Sun, X. Liu, Q. Jiang, G. S. Fu, L. A. Wu, and P. M. Fu, “Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry,” Phys. Rev. Lett. 97, 193904 (2006).
[CrossRef]

Rev. Mod. Phys.

M. Fleischhauer, A. Imamoglu, and J. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005).
[CrossRef]

Other

J. P. Marangos and T. Halfmann, in Handbook of Optics, M. Bass, ed., 3rd ed. (McGraw-Hill, 2009), vol. 4, Chap. 14, pp. 1–44.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Five-level Rb85 atomic system used in the experiment. (b) Relevant spatial beam geometry. (c) Abnormal configuration where E1 and E4 intersect with a small angle α. (d) Corresponding dressed-state pictures of (a).

Fig. 2.
Fig. 2.

Measured intensity of probe transmission [(a1) and (b1)], FWM (a2) and SWM (b2), and fluorescence signals [(a3) and (b3)] versus Δ4 at different discrete Δ1=60, 40, 20, 0, 20, 40, and 60 MHz. (a) Measured signals with E3 and E3 blocked. The other parameters are Δ2=0, P1=1.0mW, P2=14.8mW, and P4=40.0mW. (b) Measured signals with all beams on. The other parameters are Δ2=Δ3=0, P1=6.0mW, P2=21.8mW, P3=16.0mW, and P4=49.0mW. (c) Measured intensity of fluorescence signals versus Δ4 with Δ1=30, 15, 0, 15 and 30MHz from the bottom to top curves. (d) Δ2=30, 15, 0, 15, and 30MHz from the bottom to top curves. (e) Calculated fluorescence signals [(e1) for R1, (e2) for R2, (e3) for R4, and (e4) for R1+R2+R4, respectively] corresponding to (b3).

Fig. 3.
Fig. 3.

Measured probe transmission [(a1) and (b1)], FWM [(a2) and SWM (b2)], and fluorescence signals [(a3) and (b3)] versus Δ4 with different α marked out in the figures. (a) Measured signals with E3 and E3 blocked. The other parameters are Δ1=30MHz, Δ2=0, P1=4.0mW, P2=7.7mW, and P4=26mW. (b) Measured signals with all the beams on. The other parameters are Δ1=130MHz, Δ2=0, Δ3=100MHz, P1=4.0mW, P2=4.9mW, P3=9.6mW, and P4=21.6mW.

Fig. 4.
Fig. 4.

Measured probe transmission signals [(a1) and (d1)], FWM (b1) and SWM signals (e1), and fluorescence signals [(c1) and (f1)] with increasing P1. (a2), (b2), and (c2) are the corresponding power dependences of (a1), (b1), and (c1), respectively. (a)–(c) Measured signals with the lasers E3 and E3 blocked. P1=0.5, 1, 2, 3, and 4 mW from the bottom to top curves by scanning Δ4 at Δ1=20MHz. (d2), (e2), and (f2) are the corresponding power dependences of (d1), (e1), and (f1), respectively. (d)–(f) Measured signals with all beams on. P1=0.1, 0.3, 1.1, 2.4, 3.9, 5.9, 7.7, 9.1, and 10 mW from the bottom to top curves by scanning Δ4 at Δ1=30MHz. The squares are the experimental results, while the solid lines in (a2), (b2), (c2), (d2), (e2), (f2) the theoretical calculations. The other parameters are Δ2=Δ3=0, P2=3.0mW, P3=12.7mW, and P4=13mW.

Fig. 5.
Fig. 5.

Measured probe transmission (a1) and fluorescence signals (b1) with increasing P2 (with unit of mW) from the bottom to top curves by scanning Δ4 at Δ1=30MHz. (a2) Normalized EITs areas of the section between two EITs peaks and the baseline. (b2) Normalized dips area of the section between two dips and the baseline. The squares are the experimental results, while the solid lines in (a2), (b2) are the theoretical calculations. (b3) Calculated baseline height of R2 signal versus P2 corresponding to (b1); the inset is the calculated intensity of R1+R4. The other parameters are Δ2=0, Δ3=0, P1=2.4mW, P3=12.7mW, and P4=7.9mW.

Fig. 6.
Fig. 6.

Measured probe transmission (a1), SWM (b1), and fluorescence signals (c1) with increasing P4 (the unit of the values is mW) from the top to bottom curves by scanning Δ4 at Δ1=60MHz. (a2) and (b2) are the corresponding power dependences of (a1) and (b1), respectively. The squares or triangles are the experimental results, and the solid lines in (a2) and (b2) are the corresponding theoretical results. The other parameters are Δ2=Δ3=0, P1=4mW, P2=5.2mW, and P3=7.5mW.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

H=[0GiGi*(1)iΔi],
H=[0GjGj*(1)jΔj].
λ+=[(1)iΔi+(Δi2+4|Gi|2)1/2]/2,
λ=[(1)iΔi(Δi2+4|Gi|2)1/2]/2,
λ+=[(1)jΔj+(Δj2+4|Gj|2)1/2]/2,
λ=[(1)jΔj(Δj2+4|Gj|2)1/2]/2
H=[Δ1G10G1*0G4*0G4Δ4]
Δ4=(|G1|2+3Δ12)+(|G1|46|G1|2Δ123Δ14)1/22Δ1,
Δ4=(|G1|2+3Δ12)(|G1|46|G1|2Δ123Δ14)1/22Δ1.
Δ4=(|G4|2+6Δ12)+(|G4|4+12|G4|2Δ1212Δ14)1/24Δ1,
Δ4=(|G4|2+6Δ12)(|G4|4+12|G4|2Δ1212Δ14)1/24Δ1.
ΔaGa[1Δ12(|G4|22|G1|2)/Ga2+Δ14(|G4|22|G1|2)2/2Ga4],
Δb1Gb[1(2Δ1|G4||G4|2)/2Gb2+(2Δ1|G4||G4|2)2/4Gb4],

Metrics