H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).

[CrossRef]

T. Ferreira da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).

[CrossRef]

C.-H. F. Fung, X. F. Ma, H. F. Chau, and Q. Y. Cai, “Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol,” Phys. Rev. A 85, 032308 (2012).

[CrossRef]

X. F. Xing, W. Shuang, H. Z. Fu, and G. G. Can, “Passive decoy state sarg04 quantum-key-distribution with practical photon-number resolving detectors,” Chin. Phys. B 19, 100312 (2010).

[CrossRef]

H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

H. Q. Ma, J. L. Zhao, and L. A. Wu, “Quantum key distribution based on phase encoding and polarization measurement,” Opt. Lett. 32, 698–700 (2007).

[CrossRef]

B. Kraus, C. Branciard, and R. Renner, “Security of quantum-key-distribution protocols using two-way classical communication or weak coherent pulses,” Phys. Rev. A 75, 012316 (2007).

[CrossRef]

J. Chen, G. Wu, Y. Li, E. Wu, and H. P. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).

[CrossRef]

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday–Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005).

[CrossRef]

C. Gobby, Z. Yuan, and A. Shields, “Quantum key distribution over 122 km of standard telecomber,” Appl. Phys. Lett. 84, 3762–3764 (2004).

[CrossRef]

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 57901 (2003).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949).

[CrossRef]

G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” J. Am. Inst. Electr. Eng. 45, 295–301 (1926).

[CrossRef]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).

[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, December10–12, 1984 (IEEE, 1984), pp. 175–179.

B. Kraus, C. Branciard, and R. Renner, “Security of quantum-key-distribution protocols using two-way classical communication or weak coherent pulses,” Phys. Rev. A 75, 012316 (2007).

[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, December10–12, 1984 (IEEE, 1984), pp. 175–179.

C.-H. F. Fung, X. F. Ma, H. F. Chau, and Q. Y. Cai, “Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol,” Phys. Rev. A 85, 032308 (2012).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

X. F. Xing, W. Shuang, H. Z. Fu, and G. G. Can, “Passive decoy state sarg04 quantum-key-distribution with practical photon-number resolving detectors,” Chin. Phys. B 19, 100312 (2010).

[CrossRef]

C.-H. F. Fung, X. F. Ma, H. F. Chau, and Q. Y. Cai, “Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol,” Phys. Rev. A 85, 032308 (2012).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).

[CrossRef]

H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

X. F. Xing, W. Shuang, H. Z. Fu, and G. G. Can, “Passive decoy state sarg04 quantum-key-distribution with practical photon-number resolving detectors,” Chin. Phys. B 19, 100312 (2010).

[CrossRef]

C.-H. F. Fung, X. F. Ma, H. F. Chau, and Q. Y. Cai, “Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol,” Phys. Rev. A 85, 032308 (2012).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

C. Gobby, Z. Yuan, and A. Shields, “Quantum key distribution over 122 km of standard telecomber,” Appl. Phys. Lett. 84, 3762–3764 (2004).

[CrossRef]

H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 57901 (2003).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

B. Kraus, C. Branciard, and R. Renner, “Security of quantum-key-distribution protocols using two-way classical communication or weak coherent pulses,” Phys. Rev. A 75, 012316 (2007).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).

[CrossRef]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).

[CrossRef]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

K. J. Wei, H. Q. Ma, and J. H. Yang, “Experimental circular quantum secret sharing over telecom fiber network,” Opt. Express 21, 16663–16669 (2013).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

H. Q. Ma, J. L. Zhao, and L. A. Wu, “Quantum key distribution based on phase encoding and polarization measurement,” Opt. Lett. 32, 698–700 (2007).

[CrossRef]

H. Q. Ma, J. L. Zhao, and L. A. Wu, “A simple plug-and-play quantum key distribution scheme with extremely long-term stability,” in Conference on Lasers and Electro-Optics Pacific Rim, 2007, August26–31, 2007 (IEEE, 2007), pp. 1–2.

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

C.-H. F. Fung, X. F. Ma, H. F. Chau, and Q. Y. Cai, “Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol,” Phys. Rev. A 85, 032308 (2012).

[CrossRef]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).

[CrossRef]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).

[CrossRef]

B. Kraus, C. Branciard, and R. Renner, “Security of quantum-key-distribution protocols using two-way classical communication or weak coherent pulses,” Phys. Rev. A 75, 012316 (2007).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949).

[CrossRef]

C. Gobby, Z. Yuan, and A. Shields, “Quantum key distribution over 122 km of standard telecomber,” Appl. Phys. Lett. 84, 3762–3764 (2004).

[CrossRef]

X. F. Xing, W. Shuang, H. Z. Fu, and G. G. Can, “Passive decoy state sarg04 quantum-key-distribution with practical photon-number resolving detectors,” Chin. Phys. B 19, 100312 (2010).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” J. Am. Inst. Electr. Eng. 45, 295–301 (1926).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).

H. Q. Ma, J. L. Zhao, and L. A. Wu, “Quantum key distribution based on phase encoding and polarization measurement,” Opt. Lett. 32, 698–700 (2007).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

H. Q. Ma, J. L. Zhao, and L. A. Wu, “A simple plug-and-play quantum key distribution scheme with extremely long-term stability,” in Conference on Lasers and Electro-Optics Pacific Rim, 2007, August26–31, 2007 (IEEE, 2007), pp. 1–2.

H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).

X. F. Xing, W. Shuang, H. Z. Fu, and G. G. Can, “Passive decoy state sarg04 quantum-key-distribution with practical photon-number resolving detectors,” Chin. Phys. B 19, 100312 (2010).

[CrossRef]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

C. Gobby, Z. Yuan, and A. Shields, “Quantum key distribution over 122 km of standard telecomber,” Appl. Phys. Lett. 84, 3762–3764 (2004).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

J. Chen, G. Wu, Y. Li, E. Wu, and H. P. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007).

[CrossRef]

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

H. Q. Ma, J. L. Zhao, and L. A. Wu, “Quantum key distribution based on phase encoding and polarization measurement,” Opt. Lett. 32, 698–700 (2007).

[CrossRef]

H. Q. Ma, J. L. Zhao, and L. A. Wu, “A simple plug-and-play quantum key distribution scheme with extremely long-term stability,” in Conference on Lasers and Electro-Optics Pacific Rim, 2007, August26–31, 2007 (IEEE, 2007), pp. 1–2.

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).

[CrossRef]

H. H. Peng, W. J. Dong, H. Y. Xian, L. S. Hao, and L. Wei, “Nonorthogonal decoy-state quantum key distribution based on conditionally prepared down-conversion source,” Acta Phys. Sin. 59, 287–292 (2010).

Z. B. Sun, H. Q. Ma, M. Lei, H. D. Yang, L. A. Wu, G. J. Zhai, and J. Feng, “A single-photon detector in the near-infrared range,” Acta Phys. Sin. 56, 5790–5795 (2007).

C. Gobby, Z. Yuan, and A. Shields, “Quantum key distribution over 122 km of standard telecomber,” Appl. Phys. Lett. 84, 3762–3764 (2004).

[CrossRef]

A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, “Plug and play systems for quantum cryptography,” Appl. Phys. Lett. 70, 793–795 (1997).

[CrossRef]

C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech. J. 28, 656–715 (1949).

[CrossRef]

X. F. Xing, W. Shuang, H. Z. Fu, and G. G. Can, “Passive decoy state sarg04 quantum-key-distribution with practical photon-number resolving detectors,” Chin. Phys. B 19, 100312 (2010).

[CrossRef]

G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio telegraphic communications,” J. Am. Inst. Electr. Eng. 45, 295–301 (1926).

[CrossRef]

F. Xu, B. Qi, and H.-K. Lo, “Experimental demonstration of phase-remapping attack in a practical quantum key distribution system,” New J. Phys. 12, 113026 (2010).

[CrossRef]

K. J. Wei, H. Q. Ma, and J. H. Yang, “Experimental circular quantum secret sharing over telecom fiber network,” Opt. Express 21, 16663–16669 (2013).

[CrossRef]

T. Ferreira da Silva, G. B. Xavier, G. P. Temporão, and J. P. von der Weid, “Real-time monitoring of single-photon detectors against eavesdropping in quantum key distribution systems,” Opt. Express 20, 18911–18924 (2012).

[CrossRef]

J. Chen, G. Wu, Y. Li, E. Wu, and H. P. Zeng, “Active polarization stabilization in optical fibers suitable for quantum key distribution,” Opt. Express 15, 17928–17936 (2007).

[CrossRef]

T. Y. Chen, H. Liang, Y. Liu, W. Q. Cai, L. Ju, W. Y. Liu, J. Wang, H. Yin, K. Chen, Z. B. Chen, C. Z. Peng, and J. W. Pan, “Field test of a practical secure communication network with decoy-state quantum cryptography,” Opt. Express 17, 6540–6549 (2009).

[CrossRef]

C. Marand and P. D. Townsend, “Quantum key distribution over distances as long as 30 km,” Opt. Lett. 20, 1695–1697 (1995).

[CrossRef]

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday–Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005).

[CrossRef]

H. Q. Ma, J. L. Zhao, and L. A. Wu, “Quantum key distribution based on phase encoding and polarization measurement,” Opt. Lett. 32, 698–700 (2007).

[CrossRef]

B. Kraus, C. Branciard, and R. Renner, “Security of quantum-key-distribution protocols using two-way classical communication or weak coherent pulses,” Phys. Rev. A 75, 012316 (2007).

[CrossRef]

C.-H. F. Fung, X. F. Ma, H. F. Chau, and Q. Y. Cai, “Quantum key distribution with delayed privacy amplification and its application to the security proof of a two-way deterministic protocol,” Phys. Rev. A 85, 032308 (2012).

[CrossRef]

X. F. Ma, B. Qi, Y. Zhao, and H. K. Lo, “Practical decoy state for quantum key distribution,” Phys. Rev. A 72, 012326 (2005).

[CrossRef]

Y. Zhao, C.-H. F. Fung, B. Qi, C. Chen, and H.-K. Lo, “Quantum hacking: experimental demonstration of time shift attack against practical quantum-key-distribution systems,” Phys. Rev. A 78, 042333 (2008).

[CrossRef]

R. Kumar, M. Lucamarini, G. D. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A 77, 022304 (2008).

[CrossRef]

C. H. Bennett, “Quantum cryptography using any two nonorthogonal states,” Phys. Rev. Lett. 68, 3121–3124 (1992).

[CrossRef]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).

[CrossRef]

W. Y. Hwang, “Quantum key distribution with high loss: toward global secure communication,” Phys. Rev. Lett. 91, 57901 (2003).

[CrossRef]

H.-K. Lo, M. Curty, and B. Qi, “Measurement-device-independent quantum key distribution,” Phys. Rev. Lett. 108, 130503 (2012).

[CrossRef]

H. K. Lo, X. F. Ma, and K. Chen, “Decoy state quantum key distribution,” Phys. Rev. Lett. 94, 230504 (2005).

[CrossRef]

C. Z. Peng, J. Zhang, D. Yang, W. B. Gao, H. X. Ma, H. Yin, H. P. Zeng, T. Yang, X. B. Wang, and J. W. Pan, “Experimental long-distance decoy-state quantum key distribution based on polarization encoding,” Phys. Rev. Lett. 98, 010505 (2007).

[CrossRef]

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002).

[CrossRef]

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of the IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, December10–12, 1984 (IEEE, 1984), pp. 175–179.

H. Q. Ma, J. L. Zhao, and L. A. Wu, “A simple plug-and-play quantum key distribution scheme with extremely long-term stability,” in Conference on Lasers and Electro-Optics Pacific Rim, 2007, August26–31, 2007 (IEEE, 2007), pp. 1–2.